【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立. ![]()
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由. ![]()
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G. ![]()
①求证:BD⊥CF;
②当AB=4,AD=
时,求线段BG的长.
参考答案:
【答案】
(1)解:BD=CF成立.
理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
![]()
∴△BAD≌△CAF(SAS).
∴BD=CF.
(2)①证明:设BG交AC于点M.
∵△BAD≌△CAF(已证),
∴∠ABM=∠GCM.
∵∠BMA=∠CMG,
∴△BMA∽△CMG.
∴∠BGC=∠BAC=90°.
∴BD⊥CF.
②过点F作FN⊥AC于点N.
![]()
∵在正方形ADEF中,AD=DE=
,
∴AE=
=2,
∴AN=FN=
AE=1.
∵在等腰直角△ABC 中,AB=4,
∴CN=AC﹣AN=3,BC=
=4
.
∴在Rt△FCN中,tan∠FCN=
=
.
∴在Rt△ABM中,tan∠ABM=
=tan∠FCN=
.
∴AM=
AB=
.
∴CM=AC﹣AM=4﹣
=
,BM=
=
=
.
∵△BMA∽△CMG,
∴
.
∴
.
∴CG=
.
∴在Rt△BGC中,BG=
=
.
【解析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN长,又由等角的三角函数值相等,可求得AM=
AB=
,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a≠0,14(a2+b2+c2)=(a+2b+3c)2 , 那么a:b:c=( )
A.2:3:6
B.1:2:3
C.1:3:4
D.1:2:4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=
AC,连接AE交OD于点F,连接CE、OE. 
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】小王家购买了一套经济适用房,他家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:

(1)写出用含
、
的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1) a a3 a6 a2
(2) x 2 x 1 2x x 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为
的中点;(2)若∠C=∠D,求四边形BCPD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
相关试题