【题目】如图,在 △ABC中,AB=AC=5,BC=6,AD⊥BC于D,点E,F分别在AD,AB是,则BE+EF的最小值是
![]()
A. 4 B. 4.8 C. 5 D. 5.4
参考答案:
【答案】B
【解析】作F关于AD的对称点M,连接BM交AD于E,连接EF,过B作BN⊥AC于N,已知AB=AC=5,BC=6,AD⊥BC于D,根据等腰三角形的三线合一的性质可得 BD=CD=3,AD平分∠BAC,即可得点M在AC上,在Rt△ABD中,由勾股定理求得AD=4,所以
,由此求得BN=4.8,再由点F关于AD的对称点M可得EF=EM,所以 BE+EF=BE+EM=BM,根据垂线段最短得出:BM≥BN,即BE+EF≥4.8 ,即BE+EF 的最小值是4.8,故选B.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】江夏某村种植的水稻2010年平均亩产500kg,2012年平均亩产605kg,求该村亩产量的年平均增长率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公园门票的收费标准如下:
门票类别
成人票
儿童票
团体票(限5张及以上)
价格(元/人)
100
40
60
有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
(2)求证:过点A、F的直线垂直平分线段BC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角△ABC中,∠ACB=90°,AC=3,BC=4,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD于M,EN⊥DC于N.
(1)当AD=CD时,求证DE//AC;
(2)当∠MBE与△CNE的某一个内角相等时,求AD的长;
(3)当四边形MEND与△BDE的面积相等时,求AD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )
A.(3,4)B.(-3,4)C.(-4,3)D.(4,3)
相关试题