【题目】满足下列条件的△ABC不是直角三角形的是()
A. BC=1,AC=2,AB=![]()
B. BC=1,AC=2,AB=![]()
C. BC:AC:AB=3:4:5
D. ∠A:∠B:∠C=3:4:5
参考答案:
【答案】D
【解析】
先求出两小边的平方和和最长边的平方,看看是否相等即可.
A.∵12+(
)2=22,∴△ABC是直角三角形,故本选项不符合题意;
B.∵12+22=(
)2,∴△ABC是直角三角形,故本选项不符合题意;
C.设BC=3x,则AC=4x,AB=5x.
∵(3x)2+(4x)2=(5x)2,∴△ABC是直角三角形,故本选项不符合题意;
D.∵∠A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴∠A=45°,∠5=60°,∠C=75°,∴△ABC不是直角三角形,故本选项符合题意.
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知有一块等腰三角形纸板,在它的两腰上各有一点E和F,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为( )

A.
B.
C.
或
D.
或
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,A4......表示,则顶点A55的坐标是___.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解
如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC
∴∠B=∠ ,∠C=∠ .
又∵∠EAB+∠BAC+∠DAC=180°(平角定义)
∴∠B+∠BAC+∠C=180°
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:
(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.
①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °.
②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为 °(用含n的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
:
与直线
:
都经过
,直线
交y轴于点
,交x轴于点A,直线
交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:①方程组
的解为
;②
为直角三角形;③
;④当
的值最小时,点P的坐标为
其中正确的说法个数有


A. 1个B. 2个C. 3个D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解同学对体育活动的喜爱情况,某校设计了“你最喜欢的体育活动是哪一项(仅限一项)”的调查问卷.该校对本校学生进行随机抽样调查,以下是根据调查数据得到的统计图的一部分.请根据以上信息解答以下问题:
(1)该校对多少名学生进行了抽样调查?
(2)请补全图1并标上数据.
(3)若该校共有学生900人,请你估计该校最喜欢跳绳项目的学生约有多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5剑,他们的总成绩
单位:环
相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差
见小宇的作业
.
______,
______;
请完成图中乙成绩变化情况的折线;
观察你补全的折线图可以看出______
填“甲”或“乙”
的成绩比较稳定
参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;并判断谁将被选中.
相关试题