【题目】如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
![]()
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3
时,求线段DH的长.
参考答案:
【答案】(1)BD=CF成立,理由详见解析;(2)①详见解析;②
.
【解析】
试题分析:(1)先用“SAS”证明△CAF≌△BAD,再用全等三角形的性质即可得BD=CF成立;(2)利用△HFN与△AND的内角和以及它们的等角,得到∠NHF=90°,即可得①的结论;(3)连接DF,延长AB,与DF交于点M,利用△BMD∽△FHD求解.
试题解析:(l)解:BD=CF成立.
证明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF.
(2)①证明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,
在△HFN与△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°,
∴HD⊥HF,即BD⊥CF.
②解:如图,连接DF,延长AB,与DF交于点M.
在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°.
在Rt△BMD与Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD.
∴AB=2,AD=3
,四边形ADEF是正方形,∴MA=MD=
=3.
∴MB=3-2=1,DB=
=
.
∵
=
.∴
=
.
∴DH=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )
A. 小聪对,小颖错 B. 小聪错,小颖对 C. 他们两人都对 D. 他们两人都错
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】若(m+n)(m+n+5)=6,则m+n的值是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.

(1)求证:AB是圆的切线;
(2)若点E是BC上一点,已知BE=4 ,tan∠AEB=
,AB∶BC=2∶3,求圆的直径. -
科目: 来源: 题型:
查看答案和解析>>【题目】用12.56分米长的铁丝围成下面图形,( )面积最大。
A. 正方形 B. 长方形 C. 圆形 D. 三角形
相关试题