【题目】一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合. 则下列判断正确的是( )
![]()
A. 纸带①的边线平行,纸带②的边线不平行 B. 纸带①、②的边线都平行
C. 纸带①的边线不平行,纸带②的边线平行 D. 纸带①、②的边线都不平行
参考答案:
【答案】C
【解析】
直接利用翻折变换的性质结合平行线的判定方法得出答案.
如图①所示:
![]()
∵∠1=∠2=50°,
∴∠3=∠2=50°,
∴∠4=∠5=180°-50°-50°=80°,
∴∠2≠∠4,
∴纸带①的边线不平行;
如图②所示:∵GD与GC重合,HF与HE重合,
∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,
∴∠CGH+∠EHG=180°,
∴纸带②的边线平行.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,△ABC,△ADE均为等腰直角三角形,点D,E,C在同一直线上,连接BD.

(1)求证:△ADB≌△AEC;
(2)若AD=AE=
,CE=2,求BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B

(1)求抛物线的解析式;
(2)点D是第二象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD=
S四边形ACBD时,求D点坐标;
(3)在(2)的条件下,连接BC,过点D作DE⊥BC,交CB的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.

(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.
(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )

A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元 -
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD的边长为8,点E为正方形边上一点,连接BE,且BE=10,则AE的长为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋子中装有黑球两个,白球三个,这些小球除颜色外无其他区别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为 .
相关试题