【题目】如图,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),对称轴为:直线x=1,则下列结论中正确的是:( )![]()
A.a>0
B.当x>1时,y随x的增大而增大
C.
<0
D.x=3是一元二次方程ax2+bx+c=0(a≠0)的一个根
参考答案:
【答案】D
【解析】抛物线
的开口向下,则
,故A不正确;
对称轴为
,当
时,
随
的增大而减小,故B不正确;
抛物线与
轴的交点在
轴的正半轴,则
,故C不正确;
抛物线经过点(-1,0),关于对称轴
的对称点为(3,0),则
是一元二次方程
的一个根.
所以答案是:D.
【考点精析】通过灵活运用二次函数的性质和抛物线与坐标轴的交点,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克
1
2
3
4
5
6
7
8
9
…
销售额/元
2
4
6
8
10
12
14
16
18
…
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用
表示橘子卖出的质量,
表示销售额,按表中给出的关系,
与
之间的关系式为______.(4)当橘子的销售额是100元时,共卖出多少千克橘子?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于点C,点D在抛物线上且横坐标为3.

(1)求A、B、C、D的坐标;
(2)求∠BCD的度数;
(3)求tan∠DBC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:

(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?
(2)小明从早晨出发直到到达学校共用了多少分钟?
(3)小明修车前、后的行驶速度分别是多少?
(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是( )

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的顶点分别为A(2,4),B(﹣2,2),C(3,1).
(1)作出△ABC关于x轴对称的图形△DEF,写出顶点D、E、F的坐标.
(2)如果点H(3m﹣1,n﹣6)与点H′(2n+7,3m﹣9)关于y轴对称,求m,n的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:对于任何数a,符号[a]表示不大于a的最大整数.
例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.
(1)[﹣
]= ;(2)如果[a]=3,那么a的取值范围是 ;
(3)如果[
]=﹣3,求满足条件的所有整数x.
相关试题