【题目】如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.
(1)在图1中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC
(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
![]()
(图1) (图2)
参考答案:
【答案】(1)证明见解析;(2)(2)结论仍成立.理由见解析
【解析】试题分析:(1)由题中条件可得,∠DCA=∠BCA=30°,在直角三角形中可得AC=2AD,AC=2AB,所以AD+AB=AC.
(2)在AN上截取AE=AC,连接CE,可得△CAE为等边三角形,进而可得△ADC≌△EBC,即DC=BC,DA=BE,进而结论得证.
试题解析:(1)证明:∵∠MAN=120°,AC平分∠MAN,
∴∠DAC=∠BAC=60°
∵∠ABC=∠ADC=90°,
∴∠DCA=∠BCA=30°,
在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°
∴AC=2AD,AC=2AB,
∴AD+AB=AC;
(2)解:结论AD+AB=AC成立.
理由如下:在AN上截取AE=AC,连接CE,
![]()
∵∠BAC=60°,
∴△CAE为等边三角形,
∴AC=CE,∠AEC=60°,
∵∠DAC=60°,
∴∠DAC=∠AEC,
∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,
∴∠ADC=∠EBC,
∴△ADC≌△EBC,
∴DC=BC,DA=BE,
∴AD+AB=AB+BE=AE,
∴AD+AB=AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】两条平行直线被第三条直线所截,其中一组同旁内角之差为90°,则这两个角的度数分别是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2=
;⑤(xy2)3=x3y6;⑥22+23=25 , 其中做对的题有( )
A.1道
B.2道
C.3道
D.4道 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.

(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF;
(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG , 如果存在点P,能使得S△ABC=S△ABG , 求∠ACB的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.

(1)如图1,求证:∠B=∠C;
(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;
(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某商厦进货员预测一种应季衬衫能畅销市场,就用0.8万元购进这种衬衫,面市后果然供不应求.于是,商厦又用1.76万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种衬衫时每件预定售价都是58元.
(1)求这种衬衫原进价为每件多少元?
(2)经过一段时间销售,根据市场饱和情况,商厦经理决定对剩余的100件衬衫进行打折销售,以提高回款速度,要使这两批衬衫的总利润不少于6300元,最多可以打几折?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC.

(1)求证:△BDA≌△CEA;
(2)请判断△ADE是什么三角形,并说明理由.
相关试题