【题目】如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.![]()
参考答案:
【答案】解:∵飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°,
到B处时,往后测得山头C的俯角为30°,
∴∠BAC=60°,∠ABC=30°,∠BAD=30°,
∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣30°﹣60°=90°,即△ABC为直角三角形,
∵AB=6千米,
∴BC=ABcos30°=6×
=3
千米.
Rt△ABD中,BD=ABtan30°=6×
=2
千米,
作CE⊥BD于E点,
∵AB⊥BD,∠ABC=30°,∴∠CBE=60°,
则BE=BCcos60°=
,DE=BD﹣BE=
,CE=BCsin60°=
,
∴CD=
=
=
千米.
∴山头C、D之间的距离
千米.![]()
【解析】根据题目中的俯角可以求出∠BAC=60°,∠ABC=30°,∠BAD=30°,进而得到∠ACB=90°,利用AB=6千米求得BC的长,然后求得CD两点间的水平距离,进而求得C、D之间的距离.
【考点精析】根据题目的已知条件,利用关于仰角俯角问题的相关知识可以得到问题的答案,需要掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,AB=1,BC=
,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E. 
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)
;
(2)a(a﹣3)+(2﹣a)(2+a). -
科目: 来源: 题型:
查看答案和解析>>【题目】某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A﹣﹣概念错误;B﹣﹣计算错误;C﹣﹣解答基本正确,但不完整;D﹣﹣解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.
A
B
C
D
甲校(%)
2.75
16.25
60.75
20.25
乙校(%)
3.75
22.50
41.25
32.50
丙校(%)
12.50
6.25
22.50
58.75
已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.
根据以上信息,解答下列问题:
(1)求全区高二学生总数;
(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);
(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).

(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.
(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;
(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直接写出结果
(1)﹣
﹣
=_____;(2)5.4﹣(﹣3.6)=_____;
(3)
﹣
=_____;(4)
÷(﹣5)=_____;(5)(﹣8)×(﹣0.5)=_____;
(6)(﹣1)2014﹣|﹣1|=_____.
相关试题