【题目】如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.
(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;
(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S. ![]()
参考答案:
【答案】
(1)解:作图如图;
![]()
(2)解:∵点A绕点D翻滚,然后绕点C翻滚,然后绕点B翻滚,半径分别为1、
、1,翻转角分别为90°、90°、150°,
∴S=2×
+2×
+2×
+4×
×12
=
+π+
π+2
=
π+2
【解析】(1)根据点A绕点D翻滚,然后绕点C翻滚,然后绕点B翻滚,半径分别为1、
、1,翻转角分别为90°、90°、150°,据此画出圆弧即可.(2)根据总结的翻转角度和翻转半径,求出圆弧与梯形的边长围成的扇形的面积即可.
【考点精析】利用等腰梯形的性质和弧长计算公式对题目进行判断即可得到答案,需要熟知等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等;若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A﹣﹣概念错误;B﹣﹣计算错误;C﹣﹣解答基本正确,但不完整;D﹣﹣解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.
A
B
C
D
甲校(%)
2.75
16.25
60.75
20.25
乙校(%)
3.75
22.50
41.25
32.50
丙校(%)
12.50
6.25
22.50
58.75
已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.
根据以上信息,解答下列问题:
(1)求全区高二学生总数;
(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);
(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).

(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】直接写出结果
(1)﹣
﹣
=_____;(2)5.4﹣(﹣3.6)=_____;
(3)
﹣
=_____;(4)
÷(﹣5)=_____;(5)(﹣8)×(﹣0.5)=_____;
(6)(﹣1)2014﹣|﹣1|=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边OA、AB、BO作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.

(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;
(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是( )

A.平行四边形
B.矩形
C.等腰梯形
D.直角梯形
相关试题