【题目】如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线,一轮船离开码头,计划沿∠ADB的平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.
![]()
参考答案:
【答案】轮船航行没有偏离指定航线.理由见解析.
【解析】
试题只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.
试题解析:
答:轮船航行没有偏离指定航线。
理由是:在⊿ADC与⊿BDC中,
∵AD=BD,DC=DC,AC=BC
∴⊿ADC≌⊿BDC(SSS)
∴∠ADC=∠BDC
∴轮船航线DC即为∠ADB的角平分线
故轮船航行没有偏离指定航线。
考点:1.全等三角形的性质;2. 全等三角形的应用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣3,0)和B(1,0),与y轴交于点C,
(1)求抛物线的表达式;
(2)若点D为此抛物线上位于直线AC上方的一个动点,当△DAC的面积最大时,求点D的坐标;
(3)设抛物线顶点关于y轴的对称点为M,记抛物线在第二象限之间的部分为图象G.点N是抛物线对称轴上一动点,如果直线MN与图象G有公共点,请结合函数的图象,直接写出点N纵坐标t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D。AF平分∠CAB,交CD于点E,交CB于点F。

(1)求证:CE=CF。
(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示。试猜想:BE′与CF有怎样的数量关系?请证明你的结论。
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列函数中,y随x的增大而增大的是( )
A.y=
B.y=﹣x+5
C.y=
x
D.y=
(x<0) -
科目: 来源: 题型:
查看答案和解析>>【题目】(方案设计题)如图是人民公园中的荷花池,现要测量荷花池岸边树A与树B间的距离.如果直接测量比较困难,请你根据所学知识,以卷尺和测角仪为测量工具,设计两种不同的测量方案并画出图形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是( )

A.2
B.2
C.4
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是( )

A.b2>4ac
B.ax2+bx+c≤6
C.若点(2,m)(5,n)在抛物线上,则m>n
D.8a+b=0
相关试题