【题目】操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“”划“”、卵形“
”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.![]()
(1)玛雅符号
表示的自然数是 ;
(2)请你在右边的方框中画出表示自然数280的玛雅符号: .
参考答案:
【答案】18;![]()
【解析】解:(1)玛雅符号
表示的自然数是18;
(2)表示自然数的玛雅符合为:
.
所以答案是:(1)18.(2)![]()
(1)根据玛雅符号与自然数的关系确定出玛雅符号
表示的自然数即可;
【考点精析】根据题目的已知条件,利用有理数的意义的相关知识可以得到问题的答案,需要掌握正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.
如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.
若小明从编号为4的点开始,第1次“移位”后,他到达编号为 的点,…,第2016次“移位”后,他到达编号为 的点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.
(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于 ;
(2)证明以上结论.
证明:∵DN平分∠CDE,EM平分∠CED,
∴∠EDN=
∠CDE,∠NED= .(理由: )
∵∠CDE+∠CED=90°,
∴∠EDN+∠NED= ×(∠ +∠ )= ×90°= °.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;

探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠1与∠2互余,∠2与∠3互补,∠1=58°,则∠3=( )
A. 58° B. 148° C. 158° D. 32°
-
科目: 来源: 题型:
查看答案和解析>>【题目】五一期间,青年旅行社组织一个团;老师和学生共50人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票50元/张,学生门票20元/张,该旅行团购买门票共花费1800元,若设该团购买成人门票x张,则可列方程为:____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:

年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.
相关试题