【题目】如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.
(1)试说明:∠A=∠BCD;
(2)当点E运动多长时间时,CF=AB.请说明理由.
![]()
参考答案:
【答案】(1)详见解析;(2)当点E运动5s或2s时,CF=AB.
【解析】
(1)根据余角的性质即可得到结论;(2)如图,当点E在射线BC上移动时,若E移动5s,则BE=2×5=10cm,根据全等三角形的判定和性质即可得到结论.
(1)∵∠ACB=90°,CD⊥AB,∴∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD.
![]()
(2)如图,当点E在射线BC上移动5s时,CF=AB.可知BE=2×5=10(cm),∴CE=BE-BC=10-3=7(cm),∴CE=AC.∵∠A=∠BCD,∠ECF=∠BCD,∴∠A=∠ECF.(5分)在△CFE与△ABC中
,
∴△CFE≌△ABC,∴CF=AB.(7分)当点E在射线CB上移动2s时,CF=AB.可知BE′=2×2=4(cm),∴CE′=BE′+BC=4+3=7(cm),∴CE′=AC.在△CF′E′与△ABC中![]()
∴△CF′E′≌△ABC,∴CF′=AB.
综上可知,当点E运动5s或2s时,CF=AB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,EF⊥AB,垂足为F,且AB=DE.

(1)求证:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°, 点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.

(1)图②中的阴影部分的面积为 .
(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是 .
(3)若x+y=﹣6,xy=
,则x﹣y= .(4)观察图③,你能得到怎样的代数恒等式呢?
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)直接写出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x (h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车出发多长时间后,两车恰好相距40km?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,天津电视塔顶部有一桅杆部分AB,数学兴趣小组的同学在距地面高为4.2m的平台D处观测电视塔桅杆顶部A的仰角为67.3°,观测桅杆底部B的仰角为58°.已知点A,B,C在同一条直线上,EC=172m.求测得的桅杆部分AB的高度和电视塔AC的高度.(结果保留小数点后一位).
参考数据:tan67.3°≈2.39,tan60°≈1.73.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
(2)在同一直角坐标系中画出(1)中函数的图象;
(3)春节期间如何选择这两家商场去购物更省钱?
相关试题