【题目】甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
(2)在同一直角坐标系中画出(1)中函数的图象;
(3)春节期间如何选择这两家商场去购物更省钱?
参考答案:
【答案】(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);
(2)如图见解析;(3)x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.
【解析】分析:
(1)根据题中描述的数量关系分别写出甲商场和乙商场中,y与x的函数关系即可(其中乙商场需分0≤x≤200和x>200两段分别讨论);
(2)根据(1)中所得函数关系式按要求画出函数图象即可;
(3)根据(1)中所得函数关系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三种情况进行解答即可得到相应的结论.
详解:
(1)由题意可得:
甲商场:y=0.8x,
乙商场:y=x(0≤x≤200),
y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);
(2)根据(1)中所得函数关系画图如下:
![]()
(3)∵①由0.8x<0.7x+60解得:x<600;
②由0.8x=0.7x+60解得:x=600;
③由0.8x>0.7x+60解得x>600,
∴当x=600时,甲、乙商场购物花钱相等;当x<600时,在甲商场购物更省钱;当x>600时,在乙商场购物更省钱.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.
(1)试说明:∠A=∠BCD;
(2)当点E运动多长时间时,CF=AB.请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)直接写出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x (h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车出发多长时间后,两车恰好相距40km?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,天津电视塔顶部有一桅杆部分AB,数学兴趣小组的同学在距地面高为4.2m的平台D处观测电视塔桅杆顶部A的仰角为67.3°,观测桅杆底部B的仰角为58°.已知点A,B,C在同一条直线上,EC=172m.求测得的桅杆部分AB的高度和电视塔AC的高度.(结果保留小数点后一位).
参考数据:tan67.3°≈2.39,tan60°≈1.73.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线
和x轴上,则点B2019的横坐标是______. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(5,0),(9,0),点D是x轴正半轴上一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.
(Ⅰ)直接写出点C的坐标,并判断△CDE的形状,说明理由;
(Ⅱ)如图②,当点D在线段AB上运动时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长及此时点D的坐标;若不存在,说明理由;
(Ⅲ)当△BDE是直角三角形时,求点D的坐标.(直接写出结果即可)

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明过程
如图,已知∠1+∠2=180°,∠B=∠DEF,求证:DE∥BC.
证明:∵∠1+∠2=180°(已知),
而∠2=∠3(________),
∴∠1+∠3=180°
∴______∥______(________)
∴∠B=______(________)
∵∠B=∠DEF(已知)
∴∠DEF=______(等量代换)
∴DE∥BC(________)

相关试题