【题目】阅读下面材料:
小明遇到这样一个问题:如图 1,在四边形 ABCD 中,E 是 BC 的中点,AE 是∠BAD 的平分线,AB∥DC,求证:AD=AB+DC. 小明发现以下两种方法:
方法 1:如图 2,延长 AE、DC 交于点 F;
方法 2:如图 3,在 AD 上取一点 G 使 AG=AB,连接 EG、CG.
(1)根据阅读材料,任选一种方法,证明:AD=AB+DC; 用学过的知识或参考小明的方法,解决下面的问题:
(2)如图 4,在四边形 ABCD 中,AE 是∠BAD 的平分线,E 是 BC 的中点,∠BAD=60°,∠ABC=180°-
∠BCD,求证:CD=CE.
![]()
![]()
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】
(1)方法1:如图2,延长AE、DC交于点F,证明△ABE≌△FCE(ASA)即可解决问题
方法2:如图3,在AD上取一点G使AG=AB,连接EG、CG.想办法证明DC=DG即可解决问题;
(2)如图4中,作CM∥AB交AE的延长线于M,CM交AD于N,连接EN.只要证明△CNE≌△CND(ASA)即可解决问题;
(1)方法1:如图2,延长AE、DC交于点F;
![]()
∵AB∥DF,
∴∠B=∠ECF,
∵BE=EC,∠BEA=∠CEF,
∴△ABE≌△FCE(ASA),
∴AB=CF,
∵EA平分∠BAD,
∴∠BAE=∠DAF=∠F,
∴AD=DF,
∴AD=CD+AB.
方法2:如图3,在AD上取一点G使AG=AB,连接EG、CG.
![]()
∵AB=AG,∠BAE=∠GAE,AE=AE,
∴△BAE≌△GAE(SAS),
∴BE=EG=EC,∠AEB=∠AEG,
∴∠EGC=∠ECG,
∵∠BEG=∠EGC+∠ECG,
∴∠BEA=∠ECG,
∴AE∥CG,
∴∠EAG=∠CGD,
∵AB∥CD,AE∥CG,
∴∠BAE=∠DCG,
∴∠DCG=∠DGC,
∴CD=DG,
∴AD=AB+CD.
(2)证明:如图4中,作CM∥AB交AE的延长线于M,CM交AD于N,连接EN.
![]()
由(1)可知:AN=NM,AE=EM,
∴EN平分∠ANM,
∵∠BAD=60°,MN∥AB,
∴∠MND=∠BAD=60°,
∴∠ENM=∠ENA=60°,
∴∠CND=∠CNE,
∵∠B+∠ECN=180°,∠ABC=180°-
∠BCD,
∴∠NCE=∠NCD,∵CN=CN,
∴△CNE≌△CND(ASA),
∴CE=CD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球,羽毛球拍和乒乓球拍,已知篮球,羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元,
(1)请问篮球,羽毛球拍和乒乓球拍的单价分别是多少元?
(2)若要求购买篮球,羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是乒乓球拍数量的4倍,且购买乒乓球拍的数量不超过15副请问有几种购买方案?哪种方案,才能使运费最少?最少运费是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC是等腰三角形,AB=AC,点D,E,F分别在AB,BC,AC边上,且BD=CE,BE=CF.
(1)求证:△DEF是等腰三角形;
(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点 A(0,4)在 y 轴上,点 B(b,0)是 x 轴上一动点,且 4< b <4,△ABC 是以 AB 为直角边,B 为直角顶点的等腰直角三角形.
(1)求点 C 的坐标(用含 b 的式子表示);
(2)以 x 轴为对称轴,作点 C 的对称点 C 连接 BC、AC,请把图形补充完整,并求出△ABC的面积(用含 b 的式子表示);
(3)点 B 在运动过程中, OAC 的度数是否发生变化,若变化请说明理由;若不变化,请直接 写出 OAC 的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了推动阳光体育运动的广泛开展,引导学生走向操场,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为______,图①中
的值为_____;(2)本次调查获取的样本数据的众数为______,中位数为________;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.

(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?
(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7,
=1.7) -
科目: 来源: 题型:
查看答案和解析>>【题目】在四边形 ABCD 中,BC=CD,连接 AC、BD,∠ADB=90°.
(1)如图 1,若 AD=BD=BC,过点 D 作 DF⊥AB 于点 F,交 AC 于点 E:
①求∠DAC;
②猜想 AE、DE、CE 的数量关系,并证明你的猜想;
(2)如图 2,若 AC=BD,求∠DAC 的度数.

相关试题