【题目】(1)如图1,在四边形ABCD中,AB=BC=CD=DA=5 cm,BD=8 cm.则AC= cm;
(2)在宽为8 cm 的长方形纸带上,用图1中的四边形设计如图2所示的图案.
①如果用7个图1中的四边形设计图案,那么至少需要 cm长的纸带;
②设图1中的四边形有x个,所需的纸带长为y cm,求y与x之间的函数表达式;
③在长为40 cm的纸带上,按照这种方法,最多能设计多少个图1中的四边形?
![]()
参考答案:
【答案】(1)6;(2)①20,②
,③12.
【解析】
(1)由题意得,四边形为菱形,根据菱形的性质利用勾股定理解出即可.
(2)①通过前三个四边形寻找规律即可解出.②利用①中的规律表示出来即可.③令y≤40解出x的范围,即可找到最大的值.
(1)设AC与BD的交点为O,
∵AB=BC=CD=DA=5 cm,
∴四边形ABCD为菱形,
∴OD=
,AB⊥AC,
∴OC=
.
∴AC=6.
(2)①由图可知:1个四边形需要2×3=6cm,2个四边形需要3×3=9cm,3个四边形需要4×3=20cm……,
所以7个四边形需要8×3=24cm长的纸带.
②由①中规律可得:
.
③将y≤40代入②的表达式中,可得x≤
.
所以最多能设计12个四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ABC=∠ADC=90°,∠BAD=45°,E、F分别是AC、BD的中点.若AC=2,求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知A(10,0),B(10,6),BC⊥y轴,垂足为C,点D在线段BC上,且AD=AO.
(1)试说明:DO平分∠CDA;
(2)求点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )

A.4个 B.3个 C.2个 D.1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,直线l1与x轴、y轴分别交于点A(3,0)、B(0,2).
(1)如图2,点M是AB的中点,过点M作ME⊥x轴,MF⊥y轴,垂足分别为E、F.则点M 的坐标为 ;
(2)如图3,直线l2经过点B,且与l1互相垂直,过点C(0,﹣1)作CD⊥y轴,交l2于点D.则以直线l2为图像的函数表达式为 ;
(3)图1中,在x轴上是否存在点P,使得△APB是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ΔABC中,AD是高,AE、BF是角平分线,它们相交与点O,∠BAC=50°,∠C=70°,则∠DAC的度数为__________,∠BOA的度数为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.F是OC上另一点,连接DF,EF.求证:DF=EF.

相关试题