【题目】如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣
),(
)是抛物线上两点,则y1<y2其中结论正确的是( ) ![]()
A.①②
B.②③
C.②④
D.①③④
参考答案:
【答案】C
【解析】解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣
=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵b=﹣2a,
∴2a+b=0,所以②正确;
∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),
∴当x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(﹣
)到对称轴的距离比点(
)对称轴的距离远,
∴y1<y2 , 所以④正确.
故选C.
由抛物线开口方向得到a<0,有对称轴方程得到b=﹣2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=﹣2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(﹣
)与点(
)到对称轴的距离可对④进行判断.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1、∠2之间的数量关系为____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD,AE分别是边BC上的中线和高,
(1)若AE=3cm,S△ABC=12cm2.求DC的长.
(2)若∠B=40°,∠C=50°,求∠DAE的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;
(2)等腰三角形的一边长等于6cm,周长等于28cm,求其他两边的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A,B两点的坐标分别为(2
,0),(0,10),M是△AOB外接圆⊙C上的一点,且∠AOM=30°,则点M的坐标为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC=2
,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是 . 
相关试题