【题目】阅读下面材料:
小明遇到这样一个问题:
如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.
小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:
方法1:如图2,作AE平分∠CAB,与CD相交于点E.
方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.
(1)根据阅读材料,任选一种方法,证明AC=AD.
用学过的知识或参考小明的方法,解决下面的问题:
(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.
①在图中找出与∠DEF相等的角,并加以证明;
②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.
![]()
参考答案:
【答案】(1)证明见解析;(2)∠DEF=∠FDG,证明见解析;②结论:BD=kDE.理由见解析.
【解析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E,想办法证明△AEC≌△AED即可;
方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F,想办法证明∠ACD=∠ADC即可;
(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=kDE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出
=
,推出BK=kDE,再证明△BCD≌△BCK,可得BD=BK.
解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.
![]()
∵∠CAE=∠DAE,∠CAB=2∠DCB,
∴∠CAE=∠CDB.
∵∠CDB+∠ACD=90°,
∴∠CAE+∠ACD=90°,
∴∠AEC=90°.
∵AE=AE,∠AEC=∠AED=90°,
∴△AEC≌△AED,
∴AC=AD;
方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.
![]()
∵∠DCF=∠DCB,∠A=2∠DCB,
∴∠A=∠BCF.
∵∠BCF+∠ACF=90°,
∴∠A+∠ACF=90°,
∴∠AFC=90°,
∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,
∴∠ACF=∠B,
∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,
∴AC=AD;
(2)①如图4中,结论:∠DEF=∠FDG.
理由:在△DEF中,∠DEF+∠EFD+∠EDF=180°,
在△DFG中,∠GFD+∠G+∠FDG=180°,
∵∠EFD=∠GFD,∠G=∠EDF,
∴∠DEF=∠FDG.
②结论:BD=kDE,
理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC,
![]()
∵∠ABK=2∠ABC,∠EDF=2∠ABC,
∴∠EDF=∠ABK.
∵∠DFE=∠A,
∴△DFE∽△BAK,
∴
=
,
∴BK=kDE,
∴∠AKB=∠DEF=∠FDG.
∵BC=BC,∠CBD=∠CBK,
∴△BCD≌△BCK,
∴BD=BK,
∴BD=kDE
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
请按要求用尺规作出下列图形(不写作法,但要保留作图痕迹),并填空.
作出
的平分线交
于点
;
作
交
于点
平行依据是_____ __;
的度数为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:









猜“是大于
的数”或“不是大于
的数”;
猜“是
的倍数”或“不是
的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).
(1)填空:△ABC的面积为 ;
(2)求直线AB的解析式;
(3)求S关于m的解析式,并写出m的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣
<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:
=1.41,
=1.73)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,梯形
中,上底
下底
高
梯形的面积
动点
从点
出发,沿
方向,以每秒
个单位长度的速度匀速运动.
请根据
与
的关系式,完成下列问题:




···





···
补充表格中的数据;
当
时,表示的图形是_ .
梯形的面积
与
的关系如图2所示,则点
表示的实际意义是_ ;
若点
运动的时间为
的面积为
与
的关系如图3所示.求
的长和
的值.
相关试题