【题目】如图,直线AB、CD、EF都经过点O,且AB⊥CD,OG平分∠BOE,如果∠EOG=
∠AOE,求∠EOG,∠DOF和∠AOE.
![]()
参考答案:
【答案】40°,10°,10°.
【解析】直线AB,CD,EF都经过点O,且AB⊥CD,OG平分∠BOE,根据对顶角相等以及角平分线的性质,转化相等关系,然后根据已知条件求出∠EOG,∠DOF和∠AOE的度数.
∵OG平分∠BOE,∴∠BOE=2∠EOG,
又∵∠EOG=
∠AOE,∴∠AOE=
∠EOG,
∵∠AOE+∠BOE=180°,∴
∠EOG+2∠EOG=180°,即
∠EOG=180°,
∴∠EOG=40°,
∴∠AOE=
∠EOG=
×40°=100°,∠BOE=2∠EOG=2×40°=80°,
∵AB⊥CD,∴∠BOC=90°,
∴∠EOC=∠BOC-∠BOE=90°-80°=10°,
∴∠DOF=∠EOC=10°.
本题考查了角的计算、对顶角、邻补角、垂线等知识,根据邻补角互补以及角平分线的性质,转化相等关系是解题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.

(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2 .
(1)求实数k的取值范围.
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2 , 求k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD= ______ °时,四边形BECD是矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元)
备选体育用品
篮球
排球
羽毛球拍
单价(元)
50
40
25
(1)若400元全部用来购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?
(2)若400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?(若能实现直接写出一种答案即可,若不能请说明理由.)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,写出B和C的坐标;
(3)计算△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.

(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
相关试题