【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.![]()
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
参考答案:
【答案】
(1)解:依题意得:
,
解之得: ![]()
∴抛物线解析式为y=-x2-2x+3
∵对称轴为x=-1,且抛物线经过A(1,0),
∴把B(-3,0)、C(0,3)分别代入直线y=mx+n,
得
,
解之得:
,
∴直线y=mx+n的解析式为y=x+3
(2)解:设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.
把x=-1代入直线y=x+3得,y=2,
∴M(-1,2),
即当点M到点A的距离与到点C的距离之和最小时M的坐标为(-1,2)
(3)解:如图:![]()
设P(-1,t),
又∵B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2 ,
PC2=(-1)2+(t-3)2=t2-6t+10,
①若点B为直角顶点,则BC2+PB2=PC2
即:18+4+t2=t2-6t+10解之得:t=-2;
②若点C为直角顶点,则BC2+PC2=PB2
即:18+t2-6t+10=4+t2解之得:t=4,
③若点P为直角顶点,则PB2+PC2=BC2
即:4+t2+t2-6t+10=18解之得:t1=
,t2=
;
综上所述P的坐标为(-1,-2)或(-1,4)或(-1,
) 或(-1,
).
【解析】先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;
设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2 , PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2
,求BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数
的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.

(1)求∠ADE的度数;
(2)如图②,将△DEF绕点D顺时针方向旋转角
,此时等腰直角三角尺记为
,
交AC于点M,
交BC于点N,试判断
的值是否随着
的变化而变化?如果不变,请求出
的值;反之,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】为调查七年级学生了解校园防欺凌知识的情况,小刚在主题班会后就本班学生对校园防欺凌知识的了解程度进行了一次调查统计:A:熟悉,B:较了解,C:知道.如下是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:

(1)求该班共有多少名学生;
(2)在条形图中将表示“知道”的部分补充完整
(3)在扇形统计图中,求“较了解”部分所对应的圆心角的度数;
(4)如果七年级共有460名同学,请你估算全年级对校园防欺凌知识“熟悉”的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,过点A作AD⊥BC,垂足为D,E为AB上一点,过点E作EF⊥BC,垂足为F,过点D作DG∥AB交AC于点G.
(1)依题意补全图形;
(2)请你判断∠BEF与∠ADG的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.
(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.
(2)求甲、乙第一次相遇的时间.
(3)直接写出乙回到侧门时,甲到侧门的路程.

相关试题