【题目】从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组
的解,但不是方程x2﹣3x+2=0的实数解的概率为 .
参考答案:
【答案】![]()
【解析】解:
,
由①得:x>﹣2,
由②得:x>﹣
,
∵a的值是不等式组
的解,
∴a=0,1,2,3,
∵x2﹣3x+2=0,
∴(x﹣1)(x﹣2)=0,
解得:x1=1,x2=2,
∵a不是方程x2﹣3x+2=0的实数解,
∴a=0或3;
∴a的值是不等式组
的解,但不是方程x2﹣3x+2=0的实数解的概率为:
.
所以答案是:
.
【考点精析】利用求根公式和一元一次不等式组的解法对题目进行判断即可得到答案,需要熟知根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.
(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?
(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,AD是
的角平分线,
,垂足为E.
求证:
;
已知
,求AC的长;
求证:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
①E为AB的中点;
②FC=4DF;
③S△ECF=
;
④当CE⊥BD时,△DFN是等腰三角形.
其中一定正确的是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:
如图1,已知:在
中,
,
,直线m经过点A,
直线m,
直线m,垂足分别为点D、
试猜想DE、BD、CE有怎样的数量关系,请直接写出;
组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将
中的条件改为:在
中,
,D、A、E三点都在直线m上,并且有
其中
为任意锐角或钝角
如果成立,请你给出证明;若不成立,请说明理由.
数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是
角平分线上的一点,且
和
均为等边三角形,D、E分别是直线m上A点左右两侧的动点
、E、A互不重合
,在运动过程中线段DE的长度始终为n,连接BD、CE,若
,试判断
的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD垂足为E.

(1)求证:△ABE∽△DBC;
(2)求线段AE的长.
相关试题