【题目】如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣
x+b与抛物线的另一交点为D,且点D的横坐标为﹣5.![]()
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值;
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
参考答案:
【答案】
(1)
解:抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,
∴A(﹣2,0),B(4,0).
∵直线y=﹣
x+b经过点B(4,0),
∴﹣
×4+b=0,解得b=
,
∴直线BD解析式为:y=﹣
x+
,
当x=﹣5时,y=3
,
∴D(﹣5,3
),
∵点D(﹣5,3
)在抛物线y=a(x+2)(x﹣4)上,
∴a(﹣5+2)(﹣5﹣4)=3
,
∴a=
.
∴抛物线的函数表达式为:y=
x2﹣
x﹣ ![]()
(2)
解:设P(m,
m2﹣
m﹣
)
∴S△BPD=
×9[(﹣
m+
)﹣(
m2﹣
m﹣
)]
=﹣
m2﹣
m+10 ![]()
=﹣
(m+
)2+ ![]()
∴△BPD面积的最大值为 ![]()
(3)
解:如图,
![]()
作DK∥AB,AH⊥DK,AH交直线BD于点F,
∵由(2)得,DN=3
,BN=9,
∵∠DBA=30°,
∴∠BDH=30°,
∴FG=DF×sin30°=
FD,
∴当且仅当AH⊥DK时,AF+FH最小,
点M在整个运动中用时为:t=AF+
FD=AF+FH,
∵lBD:y=﹣
x+
,
∴Fx=Ax=﹣2,F(﹣2,2
)
∴当F坐标为(﹣2,2
)时,用时最少
【解析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得a的值;(2)用三角形的面积公式建立函数关系式,再确定出最大值;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+
DF.如图,作辅助线,将AF+
DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】操作与探究.
(1)分别画出图①中“
”和“
”关于直线l的对称图形(画出示意图即可).(2)图②中小冬和小亮上衣上印的字母分别是什么?
(3)把字母“
”和“
”写在薄纸上,观察纸的背面,写出你看到的字母背影.(4)小明站在五个学生的身后,这五个学生正向前方某人用手势示意一个五位数,从小明站的地方看(如图③所示),这个五位数是23456.请你判断出他们示意的真实五位数是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.

(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=
,求OE的长度. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:一组自然数1,2,3…k,去掉其中一个数后剩下的数的平均数为16,则去掉的数是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你回答下列问题:
(1)小明获得奖品的概率是多少?
(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:
选手
演讲内容
演讲能力
演讲效果
甲
85
95
95
乙
95
85
95
(1)如果认为这三方面的成绩同等重要,从他们的成绩看,谁能胜出?
(2)如果按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例计算甲、乙的平均成绩,那么谁将胜出?
相关试题