【题目】综合题
(1)【阅读发现】如图①,在△ABC中,∠ACB=45°,AD⊥BC于点D,E为AD上一点,且DE=BD,可知AB=CE.![]()
(2)【类比探究】如图②,在正方形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.判断AF与BE的数量关系,并加以证明.![]()
(3)【推广应用】在图②中,若AB=4,BF=
,则△AGE的面积为 . ![]()
参考答案:
【答案】
(1)
解:∵AD⊥BC,∠ACB=45°,
∴∠ADB=∠CDE=90°,△ACD是等腰直角三角形,
∴AD=CD,
在△ABD和△CED中,
,
∴△ABD≌△CED(SAS),
∴AB=CE;
(2)
解:AF=BE;理由如下:
∵正方形ABCD中,AB=BC=AD,∠BAD=90°,∠ABF=∠BCE=45°,AC⊥BD,OA=OB=OC,
∵AG⊥BE,
∴∠FAD+∠AFO=90°,
∵AG⊥BE,
∴∠FAO+∠AEG=90°,
∴∠AFO=∠AEG,
∵∠AFB=∠FAO+90°,
∴∠AFB=∠BEC,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(AAS),
∴AF=BE;
(3)![]()
【解析】【推广应用】解:∵AB=AD=4,∠BAD=90°,
∴BD=
=4
,
∴OA=OB=OC=
BD=2
,
∵BF=
,
∴OF=OB﹣BF=
,
∴AF=
=
,
由角的互余性质得:∠OAF=∠OBE,
在△OBE和△OAF中,
,
∴△OBE≌△OAF(ASA),
∴OE=OE=
,
∴AE=OA+OE=3
,
∵∠OAF=∠GAE,∠AOF=∠AGE=90°,
∴△AOF∽△AGE,
∴
,即
,
解得:GE=
,AG=
,
∴△AGE的面积=
AGGE=
×
×
=
;
所以答案是:
.
【考点精析】掌握等腰直角三角形和勾股定理的概念是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的
倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价) 甲
乙
进价(元/件)
20
30
售价(元/件)
29
40
(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ΔABC中,CD是AB边上的高,AC=8,∠ACD=30°,tan∠ACB=
,点P为CD上一动点,当BP+
CP最小时,DP=_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5元/吨收费,超出10吨的部分按2元/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答:
月份
一
二
三
四
用水量(吨)
6
7
12
15
水费(元)
12
14
28
37
(1)该市规定用水量为 吨,规定用量内的收费标准是 元/吨,超过部分的收费标准是 元/吨.
(2)若小明家五月份用水20吨,则应缴水费 元.
(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?
-
科目: 来源: 题型:
查看答案和解析>>【题目】高铁的开通,给N市市民出行带来了极大的方便,“元旦”期间,甲、乙两人应邀到A市的艺术馆参加演出,甲乘私家车从N市出发1小时后,乙乘坐高铁从N市出发,先到A市火车站,然后再转乘出租车到A市的艺术馆(换车时间忽略不计),两人恰好同时到达A市的艺术馆,他们离开N市的距离y(千米)与乘车时间x(小时)的关系如图所示,请结合图象解答下列问题:

(1)高铁的平均速度是每小时多少千米?
(2)分别求甲、乙(乘坐高铁时)两人离开N市的距离y与乘车时间x的函数关系式;
(3)若甲要提前30分钟到达艺术馆,那么私家车的速度必须达到多少千米/小时? -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两个仓库共存有粮食60
.解决下列问题,3个小题都要写出必要的解题过程:(1)甲仓库运进粮食14
,乙仓库运出粮食10
后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?(2)如果甲仓库原有的粮食比乙仓库的2倍少3
,则甲仓库运出多少
粮食给乙仓库,可使甲、乙两仓库粮食数量相等? (3)甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1
,乙仓库运进的数量是本仓库原有粮食数量加上8
所得的和的一半.求此时甲、乙两仓库共有粮食多少
? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=90°, D是AB边上一点,且DB=DC,过BC上一点P(不包括B,C二点)作PE⊥AB,垂足为点E, PF⊥CD,垂足为点F,已知AD:DB=1:4,BC=
,求PE+PF的长.
相关试题