【题目】将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.
![]()
(1)填空:AB与EF的位置关系是 ;
(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;
(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.
参考答案:
【答案】(1)平行;(2)见解析;(3)存在,S1=2S2,理由见解析.
【解析】
(1)根据等腰直角三角形的性质和平行线的判定方法即可得到结论;
(2)根据等腰直角三角形的性质得到∠B=∠C=45°,再根据三角形的内角和即可得到结论;
(3)连接AD,根据等腰直角三角形的性质和余角的性质可得BD=CD=AD,∠B=∠CAD,∠BDP=∠ADQ,进而可根据ASA证明△BDP≌△ADQ,再根据全等三角形的性质即可得到结论.
解:(1)∵AB=AC,∠BAC=90°,∴∠ABD=∠C=45°,
∵DE=DF,∠EDF=90°,∴∠F=∠E=45°,
∴∠F=∠ ABD,∴AB∥EF;
故答案为:平行;
(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,
∵∠EDF=90°,∴∠BDP+∠CDQ=90°,
∴∠BPD+∠DQC=360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ=180°;
(3)S1与S2之间存在不变的数量关系:S1=2S2.
理由:连接AD,如图,∵AB=AC,AD⊥BC,
∴BD=CD=AD=
BC,∠B=∠C=∠CAD=45°,
∵∠BDP+∠ADP=∠ADP+∠ADQ=90°,
∴∠BDP=∠ADQ,
∴△BDP≌△ADQ(ASA),
∴S△ABD=S△BPD+S△APD=S△ADQ+S△APD=S2,
又∵S△ADB=
S1,
∴S1=2S2.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连结AD.

(1)若∠BAD=55°,求∠C的度数;
(2)猜想FB与FE的数量关系,并证明你的猜想.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
是四边形
的对角线
上一点,且
.从图中找出
对相似三角形,它们是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读材料)
我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.
在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.

(理解应用)
(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;
(拓展应用)
(2)利用(1)中的等式计算:
①已知a2+b2=10,a+b=6,求ab的值;
②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是( )
A.
B. 
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
纸板中,
,
,
,
是
上一点,过点
沿直线剪下一个与
相似的小三角形纸板,如果有
种不同的剪法,那么
长的取值范围是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】过梯形
对角线的交点
,作底
的平行线分别交两腰于
和
,
,求:图中的位似图形,并分别指出位似中心和位似比.
相关试题