【题目】如图,在
纸板中,
,
,
,
是
上一点,过点
沿直线剪下一个与
相似的小三角形纸板,如果有
种不同的剪法,那么
长的取值范围是________.
![]()
参考答案:
【答案】![]()
【解析】
分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.
如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,
![]()
此时0<AP<4;
如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,
![]()
此时0<AP≤4;
如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,
此时,△CPG∽△CBA,
![]()
当点G与点B重合时,CB2=CP×CA,即22=CP×4,
∴CP=1,AP=3,
∴此时,3≤AP<4;
综上所述,AP长的取值范围是3≤AP<4.
故答案为:3≤AP<4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读材料)
我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.
在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.

(理解应用)
(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;
(拓展应用)
(2)利用(1)中的等式计算:
①已知a2+b2=10,a+b=6,求ab的值;
②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.

(1)填空:AB与EF的位置关系是 ;
(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;
(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是( )
A.
B. 
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】过梯形
对角线的交点
,作底
的平行线分别交两腰于
和
,
,求:图中的位似图形,并分别指出位似中心和位似比.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是【 】

A.①②③ B.仅有①② C.仅有①③ D.仅有②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD是边AB上的高,且
.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.
相关试题