【题目】如图所示,⊙O中,弦AC、BD交于E,
.
(1)求证:
;
(2)延长EB到F,使EF=CF,试判断CF与⊙O的位置关系,并说明理由.
![]()
参考答案:
【答案】(1)详见解析;(2)CF与⊙O相切,理由详见解析.
【解析】
(1)连接BC,由
=2
,得
=
,则∠ABD=∠ACB,得到△ABE∽△ABC,所以AB2=AEAC;
(2)连接AO、CO,由A为
中点,得到AO⊥DB,得到∠OAC+∠AED=90°,所以∠OAC+∠FEC=90°,而EF=CF,则∠FEC=∠ECF,又∠OAC=∠OCA,所以∠OAC+∠FEC=∠OCA+∠ECF=90°,即得到CF与⊙O相切.
证明:(1)连接BC,如图,
∵
=2
.
∴
=
.
∴∠ABD=∠ACB,
而∠CAB公用,
∴△ABE∽△ABC,
∴
∴
(2)CF与⊙O相切.理由如下:
连接AO、CO,
∵A为
中点,
∴AO⊥DB,
∴∠OAC+∠AED=90°
∵∠AED=∠FEC,
∴∠OAC+∠FEC=90°,
又∵EF=CF,
∴∠FEC=∠ECF,
∵AO=OC,
∴∠OAC=∠OCA,
∴∠OAC+∠FEC=∠OCA+∠ECF=90°,
∴FC与⊙O相切.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;
(2)在
轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在半圆O上,半径OB=2
,AD=10,点C在弧BD上移动,连接AC,H是AC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是( )
A. 5B. 6C. 7D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.
(1)求证:△ADB≌△CDE;
(2)求∠MDN的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
都在反比例函数
的图象上.(1)求
的值;(2)如果
为
轴上一点,
为
轴上一点,以点
为顶点的四边形是平行四边形,试求直线
的函数表达式;(3)将线段
沿直线
进行对折得到线段
,且点
始终在直线
上,当线段
与
轴有交点时,则
的取值范围为_______(直接写出答案)
相关试题