【题目】如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( ) ![]()
A.△ACE≌△BCD
B.△BGC≌△AFC
C.△DCG≌△ECF
D.△ADB≌△CEA
参考答案:
【答案】D
【解析】解:∵△ABC和△CDE都是等边三角形, ∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACD=∠ECD+∠ACD,
即∠BCD=∠ACE,
∴在△BCD和△ACE中
,
∴△BCD≌△ACE(SAS),
故A成立,
∴∠DBC=∠CAE,
∵∠BCA=∠ECD=60°,
∴∠ACD=60°,
在△BGC和△AFC中
,
∴△BGC≌△AFC,
故B成立,
∵△BCD≌△ACE,
∴∠CDB=∠CEA,
在△DCG和△ECF中
,
∴△DCG≌△ECF,
故C成立,
故选:D.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2011年5月22日﹣29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣
x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是( ) 
A.y=﹣
x2+
x+1
B.y=﹣
x2+
x﹣1
C.y=﹣
x2﹣
x+1
D.y=﹣
x2﹣
x﹣1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E,F分别是 □ABCD的边AB,CD的中点,则图中平行四边形的个数共有( ).

A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度数;
(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三条线段长分别为10,14,20,以其中两条为对角线,剩余一条为边,可以画出________个平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.
(1)若点C是线段 AB 的中点,求线段CO的长.
(2)若动点 P、Q 分别从 A、B 同时出发,向右运动,点P的速度为4cm/s,点Q的速度为3cm/s,设运动时间为 x 秒,
①当 x=__________秒时,PQ=1cm;
②若点M从点O以7cm/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
(3)若有两条射线 OC、OD 均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD 同时停止旋转,设旋转时间为t秒,当t为何值时,射线 OC⊥OD?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在今年法国网球公开赛中,我国选手李娜在决赛中成功击败对手夺冠,称为获得法国网球公开赛冠军的亚洲第一人.某班体育委员就本班同学对该届法国网球公开赛的了解程度进行全面调查统计,收集数据后绘制了两幅不完整的统计图,如图(1)和图(2).根据图中的信息,解答下列问题:

(1)该班共有名学生;
(2)在图(1)中,“很了解”所对应的圆心角的度数为;
(3)把图(2)中的条形图形补充完整.
相关试题