【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有 (写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为
;
⑤当△ABP≌△ADN时,BP=
.
![]()
参考答案:
【答案】①②⑤.
【解析】
试题分析:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴
,∴CM=
x(4﹣x),∴S四边形AMCB=
[4+
x(4﹣x)]×4=
=
,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,
解得
,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM=
=
,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣
x(4﹣x)=
,∴x=1时,AG最小值=3,∴AM的最小值=
=5,故④错误.
∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=
z,∴z+
z=4,∴z=
,∴PB=
故⑤正确.
故答案为:①②⑤.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )

A.2对 B.3对 C.4对 D.5对
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.
(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;
(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1 , 则点P1的坐标为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国治霾任务仍然艰巨,根据国务院发布的《大气污染防治行动计划》,大气污染防治行动计划共需投入17500亿元,数据17500用科学记数法表示为( )
A. 175×103 B. 1.75×105 C. 1.75×104 D. 1.75×106
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列因式分解错误的是( )
A.2a-2b=2(a-b)
B.x2-9=(x+3)(x-3)
C.a2+4a-4=(a+2)2
D.-x2-x+2=-(x-1)(x+2) -
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:
①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=
.上述结论中正确的个数是( )

A.1 B.2 C.3 D.4
相关试题