【题目】画图并填空:如图,方格纸中每个小正方形的边长都为 1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B 的对应点 B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
(2)线段 AA′与线段 BB′的数量和位置关系是___________;
(3)求△A′B′C′的面积.
![]()
参考答案:
【答案】(1)略;(2)平行且相等;(3)8
【解析】
(1)直接利用平移的性质得出各对应点位置进而得出答案;
(2)利用平移的性质得出对应点连线的关系;
(3)利用三角形面积求法得出答案.
(1)如图所示:△A′B′C′即为所求;![]()
(2)线段AA′与线段BB′的关系是:平行且相等;故答案为:平行且相等;
(3)△A′B′C′的面积与△ABC的面积相等为:
×4×4=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3 .

(1)△ABC与△A1B1C1的位似比等于;
(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;
(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?
(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF的交点为点H,∠1+∠2=180°,∠3=∠C.
(1)求证:DE∥BC;

(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F应该满足的位置条件,在图2中画出符合条件的图形并说明理由.
(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC为等边三角形,D为BC上任一点,∠ADE=60°,边DE与∠ACB外角的平分线相交于点E.
(1)求证:AD=DE.
(2)若点D在CB的延长线上,如图2,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了名同学;
(2)条形统计图中,m= , n=;
(3)扇形统计图中,热词B所在扇形的圆心角的度数是;
(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知BE平分∠ABD,DE平分∠BDC,且∠BED =∠ABE +∠EDC.
(1)如图1,求证:AB//CD;
(2)如图2,若∠ABE=3∠ABF,且∠BFD=30°时,试求
的值;(3)如图3,若H是直线CD上一动点(不与D重合),BI平分∠HBD,画出图形,并探究出∠EBI与∠BHD的数量关系.



-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )

A. (1,2)B. (﹣1,2)C. (﹣1,0)D. (1,0)
相关试题