【题目】如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是 .
![]()
参考答案:
【答案】![]()
【解析】
试题作出图形,根据矩形的对边相等可得BC=AD,CD=AB,当折痕经过点D时,根据翻折的性质可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;当折痕经过点B时,根据翻折的性质可得BA′=AB,此两种情况为BA′的最小值与最大值的情况,然后写出x的取值范围即可.
试题解析:
![]()
如图,∵四边形ABCD是矩形,AB=8,AD=17,
∴BC=AD=17,CD=AB=8,
①当折痕经过点D时,
由翻折的性质得,A′D=AD=17,在Rt△A′CD中,A′C=15 ∴BA′=BC-A′C=17-15=2;
②当折痕经过点B时,由翻折的性质得,BA′=AB=8,
∴x的取值范围是2≤x≤8.
故答案为:2≤x≤8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将周长为8的△ABC沿BC方向平移1个单位长度得到
,则四边形
的周长为( )
A. 8 B. 10 C. 12 D. 16
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个平行四边形的一条边长为5,两条对角线的长分别为6和8,则它的面积为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,结合题意写出当x取何值时,商场获利润不少于2160元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的平分线,求证:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】建立模型:
如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.
操作:
过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.
模型应用:
(1)如图2,在直角坐标系中,直线l1:y=
x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知BD⊥AC,EF⊥AC,垂足分别为D、F,∠1=∠2,请将证明∠ADG=∠C过程填写完整.
证明:BD⊥AC,EF⊥AC(已知)
∴∠BDC=∠EFC=90°
∴BD∥
∠2=∠3
又∵∠1=∠2(已知)
∴∠1=∠3(等量代换)
∴DG∥
∴∠ADG=∠C

相关试题