【题目】如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2. ![]()
(1)求点P的坐标;
(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.
参考答案:
【答案】
(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.
![]()
∵EH∥AP,
∴△ACP∽△ECH,
∴
=
=
=
,
∴CH=2n,EH=2m=6,
∵CD⊥AB,
∴PC=PD=n,
∵PB∥HE,
∴△DPB∽△DHE,
∴
=
=
=
,
∴
=
,
∴m=1,
∴P(1,0).
(2)由(1)可知,PA=4,HE=8,EF=9,
连接OP,在Rt△OCP中,PC=
=2
,
∴CH=2PC=4
,PH=6
,
∴E(9,6
),
∵抛物线的对称轴为CD,
∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6
)代入得到a=
,
∴抛物线的解析式为y=
(x+3)(x﹣5),即y=
x2﹣
x﹣ ![]()
【解析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出
=
=
=
,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出
=
=
=
,可得
=
,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;
-
科目: 来源: 题型:
查看答案和解析>>【题目】当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是( )

A. y=kx﹣2(k≠0) B. y=kx+k+2(k≠0)
C. y=kx﹣k+2(k≠0) D. y=kx+k﹣2(k≠0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.

(1)点P(a,b)经过T变换后得到的点Q的坐标为
;若点M经过T变换后得到点N(6,﹣
),则点M的坐标为
.
(2)A是函数y=
x图象上异于原点O的任意一点,经过T变换后得到点B.
①求经过点O,点B的直线的函数表达式;
②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比. -
科目: 来源: 题型:
查看答案和解析>>【题目】某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:
污水处理器型号
A型
B型
处理污水能力(吨/月)
240
180
已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.
(1)求每台A型、B型污水处理器的价格;
(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读与思考 婆罗摩笈多(Brahmagupta),是一位印度数学家和天文学家,书写了两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数概念及加减法运算仅晚于中国《九章算术》,而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及部分证明过程如下:
已知:如图1,四边形ABCD内接于⊙O,对角线AC⊥BD于点P,PM⊥AB于点M,延长MP交CD于点N,求证:CN=DN.
证明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…
(1)请你阅读婆罗摩笈多定理的证明过程,完成剩余的证明部分.
(2)已知:如图2,△ABC内接于⊙O,∠B=30°,∠ACB=45°,AB=2,点D在⊙O上,∠BCD=60°,连接AD,与BC交于点P,作PM⊥AB于点M,延长MP交CD于点N,则PN的长为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】某校课外兴趣小组从某市七年级学生中抽取2000人做了如下问卷调查,并将调查结果绘制成如图所示的两幅统计图.
问卷
你平时喝饮料吗?( )
A.不喝 B.喝
请选择B选项的同学回答下面问题:
请您减少喝饮料的数量,将节省下来的钱捐给希望工程,您愿意平均每月少喝( )
A.0瓶 B.1瓶
C.2瓶 D.2瓶以上

根据上述信息,解答下列问题:
(1)求条形图中n的值.
(2)如果每瓶饮料平均3元钱,“少喝2瓶以上”按少喝3瓶计算:
①这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?
②按上述统计结果估计,该市七年级6万名学生一个月少喝饮料大约能节省多少钱捐给希望工程?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A(﹣4,0),B(0,4),在x轴上确定点M,使三角形MAB是等腰三角形,则M点的坐标为_____.
相关试题