【题目】如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.
(1)如图1,求证:∠AND=∠CED;
(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;
(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=
,求线段OF的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)OF=
.
【解析】
(1)连接BE,则∠CAB=∠CEB,∠BCD=∠DEB,由CD是∠ACB的平分线得∠ACD=∠BCD,从而,∠CAB+∠ACD=∠CEB+∠DEB;由∠CAB+∠ACD=∠AND可得结论;
(2)根据2∠BDC=90°-∠DBE得∠BDC+∠DBE=90°-∠BDC,由∠BDC=∠BAC得∠BDC+∠DBE=∠CFB,结合AB是直径可得∠CFB=∠CBN,从而可证明∠CDE=∠CED,故可得结论;
(3)过C作CM⊥BE,CK⊥DB易证△CEM≌△CDK,△CMB≌△CKB从而求出CM=6,作FH⊥BC于点H,FH交CM于点G,易证△CGH≌△FHB,得CG=BF,设FM=x,利用tan∠GFM=tan∠MCB=
=
求得 FM=3,CF=3
. 作EQ⊥DF交DF于点Q,通过△CBF∽△EDF设FQ=3k,EQ==6k,则DQ=2k,EF=3
k,DE=2
k得BE=5+3
k,BD=BE-4=3
k+1,作DP⊥BE交于点P,运用勾股定理求出k的值,连接OD,在Rt△ODF中,OF2=OD2 -DF2=50-45=5,故OF=
.
(1)证明:连接BE.
![]()
∠CED=∠CEB+∠DEB
∠AND=∠CAB+∠ACD
∵CD是∠ACB的平分线
∴∠ACD=∠BCD=∠DEB
∵∠CAB=∠CEB,
∴∠CAB+∠ACD=∠CEB+∠DEB
∠CED=∠AND;
(2)∵2∠BDC=90-∠DBE
∴∠BDC+∠DBE=90°-∠BDC
∵∠BDC=∠BAC
∴∠BDC+∠DBE=∠CFB
∴90°-∠DBE=90°-∠CAB
∵AB是直径,∴∠ACB=90
∴∠CFB=∠CBN,
∠CNB=∠CBE=∠CDE
∠CNB=∠AND=∠CED
∴∠CDE=∠CED,
∴CE=CD;
(3)过C作CM⊥BE,CK⊥DB
∴∠CME=∠CKD=90°,∠CEM=∠CDK,CE=CD
∴△CEM≌△CDK,∴EM=DK,CM=CK
∴△CMB≌△CKB,∴BM=BK
∴BE-BD=2BM=4,BM=2,∴CM=6.;
作FH⊥BC于点H,FH交CM于点G
![]()
∵∠FCB=45°∴△CGH≌△FHB,∴CG=BF
设FM=x,∴CG=BF=x+2,GM=6-(x+2)=4-x
tan∠GFM=tan∠MCB=
=![]()
∴x=3,FM=3,CF=3
.
∵△CBF∽△EDF(可以用正切值相等)
作EQ⊥DF交DF于点Q
设FQ=3k,EQ==6k,则DQ=2k,EF=3
k,DE=2
k
∴BE=5+3
k,BD=BE-4=3
k+1
作DP⊥BE交于点P,∵∠PED=∠BCD=45°,
∴PD=PE=
DE=2
k,PB=BE-PE=5+
k;
在Rt△PDB中,PB2+PD2=DB2,(5+
k)2+(2
k)2=(3
k+1)2
∴k=
, DF=5k=3
=CF, BD=3
k+1=10,;
∴OF⊥CD
连接OD,∴∠AOD=∠BOD=90°,∴OD=
BD=5![]()
在Rt△ODF中,OF2=OD2 -DF2=50-45=5,∴OF=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副直角三角板如图摆放,等腰直角三角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.
求证:△CDO是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上的点E处.
(1)求点E、点D的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F,点P是坐标轴上一点请直接写出使S△CEP=
S△COF的点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,G是边长为4的正方形ABCD的边BC上的一点,矩形DEFG的边EF过A,GD=5.
(1)指出图中所有的相似三角形;
(2)求FG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D,E是等边三角形ABC的边BC,AC上的点,且CD=AE,AD交BE于点P,BQ⊥AD于点Q,已知PE=2,PQ=6,则AD等于( )

A.10B.12C.14D.16
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE交于点P,AC,BE交于点M,AD,CE交于点N,连接MN,则下列五个结论:①AD=BE;②∠BMC=∠ANE;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中一定正确的是__________.(填出所有正确结论的序号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C,E,F,B在一条直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.

(1)求证:AB=CD;
(2)若AB=CF,∠B=50°,求∠D的度数.
相关试题