【题目】如图,在ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.
![]()
(1)求证:CF=CD;
(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.
参考答案:
【答案】(1)见解析;(2)DE⊥AF
【解析】
试题分析:(1)根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=CF,进而得出CF=CD;
(2)利用全等三角形的判定与性质得出AE=EF,再利用角平分线的性质以及等角对等边求出DA=DF,利用等腰三角形的性质求出即可.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∵点F为DC的延长线上的一点,
∴AB∥DF,
∴∠BAE=∠CFE,∠ECF=∠EBA,
∵E为BC中点,
∴BE=CE,
则在△BAE和△CFE中,
,
∴△BAE≌△CFE(AAS),
∴AB=CF,
∴CF=CD;
(2)解:DE⊥AF,
理由:∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵∠BAF=∠F,
∴∠DAF=∠F,
∴DA=DF,
又由(1)知△BAE≌△CFE,
∴AE=EF,
∴DE⊥AF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若△ABC得三边a,b,c满足(a﹣b)(a2+b2﹣c2)=0,则△ABC的形状为__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于
(2)试用两种不同的方法求图2中阴影部分的面积.
方法1: 方法2:
(3)根据图2你能写出下列三个代数式之间的等量关系吗?
代数式:(x+y)2,(x-y)2,4xy.(4)根据(3)题中的等量关系,解决如下问题:
若x+y=4,xy=3,则(x-y)2= -
科目: 来源: 题型:
查看答案和解析>>【题目】在一个三角形中,若一条边等于另一条边的两倍,则称这种三角形为“倍边三角形”. 例如:边长为a=2,b=3,c=4的三角形就是一个倍边三角形.

(1)如果一个倍边三角形的两边长为6和8,那么第三条边长所有可能的值为 .
(2)如图①,在△ABC中,AB=AC,延长AB到D,使BD=AB,E是AB的中点.
求证:△DCE是倍边三角形;
(3)如图②,Rt△ABC中,∠C=90°,AC=4,BC=8,若点D在边AB上(点D不与A、B重合),且△BCD是倍边三角形,求BD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(﹣1,1),B(﹣4,2),C(﹣3,4).

(1)请画出△ABC向右平移5个单位长度后得到△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=


求:(1)求AD的长;
(2)△ABC是直角三角形吗?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
①(﹣2x)(4x2﹣2x+1) ②(6a3﹣4a2+2a)÷2a
③a4 +(a2)4 -(a2)2 ④

⑤(2a+b)2 ⑥ (3x+7y)(3x-7y)
相关试题