【题目】如图,∠ABC=90°,∠EBE′=90°,AB=BC,BE=BE′,若AE=1,BE=2,∠BE′C=135°,求EC的长.![]()
参考答案:
【答案】解:∵∠ABE+∠EBC=∠ABC=90°,
∠E'BC+∠EBC=∠E'BE=90°,
∴∠ABE=∠E'BC,
在△ABE与△CBE'中,
,
∴△ABE≌△CBE'(SAS),
∴CE'=AE=1,
∵∠EBE'=90°,BE=BE'=2,
∴EE'2=22+22=8,
∵∠EBE'=90°,BE=BE',
∴∠BE'E=45°,
∵∠BE'C=135°,
∴∠EE'C=135°﹣45°=90°,
∴ ![]()
【解析】(1)根据∠ABC=90°,∠EBE′=90°,先证明∠ABE=∠E'BC,再利用全等三角形的判定证明△ABE≌△CBE',得出CE'=AE,然后证明∠EE'C=90°,利用勾股定理求出EE',在Rt△EE'C中,根据勾股定理求出EC的长即可。
-
科目: 来源: 题型:
查看答案和解析>>【题目】若(x+3)2+|y﹣2|=0,则(x+y)2017= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:﹣23﹣3×|﹣2|﹣(﹣7+5)2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题发现:如图1,在△ABC中,∠C=90°,分别以AC,BC为边向外侧作正方形ACDE和正方形BCFG.
(1)△ABC和△DCF面积的关系是______________;(请在横线上填写“相等”或“不等”)
(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;
(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.

图1

图2

图3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,高铁列车座位后面的小桌板收起时可以近似地看作与地面垂直,展开小桌板后,桌面会保持水平.如图的实线是小桌板展开后的示意图,其中OB表示小桌面的宽度,BC表示小桌板的支架.连接OA,此时OA=75厘米,∠AOB=∠ACB=37°,且支架长BC与桌面宽OB的长度之和等于OA的长度,求点B到AC的距离.(参考数据:
,
,
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )

A.1个
B.2个
C.3个
D.4个
相关试题