【题目】如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为42,则这9个数的和为( )
![]()
A. 69 B. 84 C. 189 D. 207
参考答案:
【答案】C
【解析】
由日历表可知,圈出的9个数中,最大数与最小数的差总为16,故圈出的最小数为x,则圈出的最大数为x+16;
接下来根据圈出的9个数中最大数与最小数的和为42可列方程,求解即可得到圈出最小数;
此时再根据圈出的9个数中,每一行相邻两数相差1,每一列相邻两数相差7即可写出这9个数,至此,本题就不难解答了.
解:设圈出的最小数为x,则圈出的最大数为x+16,由题意得,
x+(x+16)=42,
解得x=13.
故圈出的最小的三个数为13,14,15,
下面一行的数分别比上面三个数大7,故为20,21,22,
第三行的数分别比上一行三个数大7,故为27,28,29,
所以圈出的这9个数的和为189.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;
(2)随机选取2名同学,其中有乙同学. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.

(1)求证:四边形EFGH是正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】看图说故事. 请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:

(1)指出变量x和y的含义;
(2)利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量. -
科目: 来源: 题型:
查看答案和解析>>【题目】某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm.

(1)用含x的代数式表示扇形O2CD的半径;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2 , 当⊙O1的半径为多少时,该玩具的制作成本最小? -
科目: 来源: 题型:
查看答案和解析>>【题目】下框中是小明对一道题目的解答以及老师的批改.
题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?
解:,
根据题意,得x2x=288.
解这个方程,得x1=﹣12(不合题意,舍去),x2=12
所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)
答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2 .我的结果也正确!
(1)小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?
(2)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样…
(3)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角, ①若AB是⊙O的直径,则∠APB=°;②若⊙O的半径是1,AB=
,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.
相关试题