【题目】如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点. ![]()
(1)求证:四边形EFGH是正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积.
参考答案:
【答案】
(1)证明:在△ABC中,E、F分别是AB、BC的中点,
故可得:EF=
AC,同理FG=
BD,GH=
AC,HE=
BD,
在梯形ABCD中,AB=DC,
故AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
在△ABD中,E、H分别是AB、AD的中点,
则EH∥BD,
同理GH∥AC,
又∵AC⊥BD,
∴EH⊥HG,
∴四边形EFGH是正方形.
![]()
(2)解:连接EG.
在梯形ABCD中,
∵E、G分别是AB、DC的中点,
∴EG是梯形的中位线,
∴EG=
(AD+BC)=3.
在Rt△EHG中,
∵EH2+GH2=EG2,EH=GH,
∴EH2=
,即四边形EFGH的面积为 ![]()
【解析】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG,利用梯形的中位线定理求出EG的长,然后结合(1)的结论求出EH2=
,也即得出了正方形EHGF的面积.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握三角形中位线定理(连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过点B作BE⊥AC,与BD的垂线DE交于点E.

(1)求证:△ABC≌△BDE;
(2)△BDE可由△ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法). -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:
成绩
划记
频数
百分比
不及格

9
10%
及格

18
20%
良好

36
40%
优秀

27
30%
合计
90
90
100%
(1)请解释“随机抽取了50名男生和40名女生”的合理性;
(2)从上表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;
(3)估计该校七年级体育测试成绩不及格的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;
(2)随机选取2名同学,其中有乙同学. -
科目: 来源: 题型:
查看答案和解析>>【题目】看图说故事. 请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:

(1)指出变量x和y的含义;
(2)利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为42,则这9个数的和为( )

A. 69 B. 84 C. 189 D. 207
-
科目: 来源: 题型:
查看答案和解析>>【题目】某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm.

(1)用含x的代数式表示扇形O2CD的半径;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2 , 当⊙O1的半径为多少时,该玩具的制作成本最小?
相关试题