【题目】关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是( )
A. 是六次六项式 B. 是五次六项式
C. 是六次五项式 D. 是五次五项式
参考答案:
【答案】B
【解析】
根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.
多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(﹣
,0) D.(﹣
,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).
(1)△A1B1C1是△ABC绕点 逆时针旋转 度得到的,B1的坐标是 ;
(2)求出线段AC旋转过程中所扫过的面积(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 .
(1)EF=
OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=
OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=
;(5)OGBD=AE2+CF2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=
,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )
A. 7 B. 15 C. ﹣24 D. ﹣1
-
科目: 来源: 题型:
查看答案和解析>>【题目】在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm,当所挂物体质量为3kg时,弹簧长16.8cm.写出弹簧长度L(cm)与所挂物体质量x(kg)之间的函数表达式 .
相关试题