【题目】已知二次函数
的图象与x轴交于(
, 0)和(
, 0), 其中
,与
轴交于正半轴上一点.下列结论:①
;②
;③a>b;④
.其中正确结论的序号是____________.
参考答案:
【答案】②④
【解析】根据与坐标轴的交点判断出a<0,然后把交点坐标(1,0)代入函数解析式求出a、b、c的关系式,再判断出对称轴在-
到0之间,然后对各小题分析判断即可得解.
∵抛物线与x轴的交点为(1,0)和(x1,0),-2<x1<-1,与y轴交于正半轴,
∴a<0,
∵-2<x1<-1,
∴-
<-
<0,
∴b<0,b>a,故①错误,③错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,
∴ac<
b2,故②正确;
∵抛物线与x轴的交点有一个为(1,0),
∴a+b+c=0,
∴b=-a-c,
∵b<0,b>a(已证),
∴-a-c<0,-a-c>a,
∴c>-a,c<-2a,
∴-a<c<-2a,故④正确,
综上所述,正确的结论有②④.
故答案为:②④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小阳在如图①所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的点_______(在点P、N、Q、M、O中选取)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 ,BI、CI分别平分∠ABD和∠ACD,∠A=40°,∠D=160°,则∠I=___________

-
科目: 来源: 题型:
查看答案和解析>>【题目】AD为△ABC边上 BC上的中线,若 AD=4,AC=5,则 AB的取值范围是___________
-
科目: 来源: 题型:
查看答案和解析>>【题目】有三条长度均为a的线段,分别按以下要求画圆.

(1)如图①,以该线段为直径画一个圆,记该圆的周长为C1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;
(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.
(1)∠AOC与∠BOD的度数相等吗,为什么?
(2)已知OM平分∠AOC,若射线ON在∠COD的内部,且满足∠AOC与∠MON互余;
①∠AOC=32°,求∠MON的度数;
②试探究∠AON与∠DON之间有怎样的数量关系,请写出结论并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格中的每个小方格都是边长为1的正方形,我们把以格点间的连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;
(2)把△ABC绕点C按顺时针旋转90°后得△A2B2C2,画出△A2B2C2的图形并写出B2的坐标;
(3)把△ABC以点A为位似中心放大,使放大前后对应边的比为1∶2,画出△AB3C3的图形.

相关试题