【题目】如图,已知E,F,G,H分别为正方形ABCD各边上的动点,且始终保持AE=BF=CG=DH,点M,N,P,Q分别是EH、EF、FG、HG的中点.当AE从小于BE的变化过程中,若正方形ABCD的周长始终保持不变,则四边形MNPQ的面积变化情况是( ) ![]()
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大
参考答案:
【答案】D
【解析】解:在正方形ABCD中,AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°,
∵AE=BF=CG=DH,
∴AB﹣AE=BC﹣BF,
∴BE=CF,
在△EBF和△FCG中,
,
∴△EBF≌△FCG(SAS);
∴∠EFB=∠FGC,EF=FG,
∵∠CFG+∠FGC=90°,
∴∠CFG+∠EFB=90°,
∴∠EFG=180°﹣90°=90°,
同理可得:FG=GH=EH,
∴四边形EFGH是正方形,同理:四边形MNPQ是正方形,
当AE从小于BE的变化过程中,若正方形ABCD的周长始终保持不变,
则正方形EFGH先变小后变大,
∴四边形MNPQ的面积变化情况是先减小后变大;
故选:D.
根据正方形的四条边都相等可得AB=BC=CD=AD,然后求出BE=CF,再利用“边角边”证明△EBF和△FCG全等;可得EF=FG,然后求出∠EFG=90°,同理可得FG=GH=EH,证出四边形EFGH是正方形,同理证出四边形MNPQ是正方形,即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A区域面积的2倍.设A区域面积为x(m2).
(1)求该园圃栽种的花卉总株数y关于x的函数表达式.
(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?
(3)若三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元.请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B.过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.

(1)求点A,M的坐标.
(2)当BD为何值时,点F恰好落在该抛物线上?
(3)当BD=1时
求直线MF的解析式,并判断点A是否落在该直线上.
(4)②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1 , S2 , S3 , 则S1:S2:S3= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=
CD,以DE,DF为邻边作矩形DEGF.设AQ=3x. 
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中, ①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案). -
科目: 来源: 题型:
查看答案和解析>>【题目】在一堂关于“折纸问题”的数学综合实践探究课中,小明同学将一张矩形ABCD纸片,按如图进行折叠,分别在BC、AD两边上取两点E,F,使CE=AF,分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C′DE与△A′BF,且边C′E与A′B交于点G,边A′F与C′D交于一点H.已知tan∠EBG=
,A′G=6,C′G=1,则矩形纸片ABCD的周长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在方格纸中,A,B,C三点都在小方格的顶点上(每个小方格的边长为1).

(1)在图甲中画一个以A,B,C为其中三个顶点的平行四边形,并求出它的周长.
(2)在图乙中画一个经过A,B,C三点的圆,并求出圆的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋里装有2个红球,1个白球,1个黄球,它们除颜色外其余都相同.
(1)求从袋中摸出一个球是黄球的概率.
(2)摸出一个球,记下颜色后不放回,搅拌均匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表).
相关试题