【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣
,﹣1),C(
,﹣1).
(1)已知点D(2,2),E(
,1),F(
,﹣1).在D,E,F中,是等边△ABC的中心关联点的是 ;
(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.
①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;
②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)
(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为
.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.
![]()
参考答案:
【答案】(1)E,F;(2)①0≤m≤
,②﹣
≤b≤2;(3)存在,t=![]()
【解析】试题解析:(1)根据等边三角形的中心关联点的定义,可得 点E、F 是等边三角形的中心关联点;
(2)①依题意A(0,2),M(
,0)可求得直线AM的解析式为
,所以△OAE为等边三角形,所以AE边上的高长为
.当点P在AE上时,
≤OP≤2.所以当点P在AE上时,点P都是等边△ABC的中心关联点.所以0≤m≤
;
②同①得﹣
≤b≤2;
(3)t=![]()
解:(1)E,F;
(2)①解:依题意A(0,2),M(
,0).
可求得直线AM的解析式为
.
经验证E在直线AM上.
因为OE=OA=2,∠MAO=60°,
所以△OAE为等边三角形,
所以AE边上的高长为
.
当点P在AE上时,
≤OP≤2.
所以当点P在AE上时,点P都是等边△ABC的中心关联点.
所以0≤m≤
;
②﹣
≤b≤2;
(3)t=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:20022﹣2001×2003= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:
数据段
频数
频率
30﹣40
10
0.05
40﹣50
36
c
50﹣60
a
0.39
60﹣70
b
d
70﹣80
20
0.10
总计
200
1
(1)表中a、b、c、d分别为:a=; b=; c=; d= .
(2)补全频数分布直方图;
(3)如果某天该路段约有1500辆通过,汽车时速不低于60千米即为违章,通过该统计数据估计当天违章车辆约有多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠MAN=135°,正方形ABCD绕点A旋转.
(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.
①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是 ;
②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知O为直线AD上一点,射线OC,射线OB,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°.

(1)∠COD与∠AOB相等吗?请说明理由;
(2)试求∠AOC与∠AOB的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是( )

A.4
B.3
C.2
D.1
相关试题