【题目】有一批圆心角为90o,半径为3的扇形下脚料,现利用这批材料截取尽可能大的正方形材料,如图有两种截取方法:
方法一:如图1所示,正方形OPQR的顶点P、Q、R均在扇形的边界上;
方法二:如图2所示,正方形顶点C、D、E、F均在扇形边界上.
试分别求这两种截取方法得到的正方形面积,并说明哪种截取方法得到的正方形面积更大.
![]()
参考答案:
【答案】方法一:S1=
;方法二:S2=
.方法一的面积更大.
【解析】试题分析:根据题意画出图形,分别连接PQ和过O作OG⊥DE,交CF于点H,连接OF,构造直角三角形求得正方形的边长,求得正方形的面积后比较即可.由于正方形内接于扇形,故应分两种情况进行讨论.
试题解析:解:方法一:如图1
![]()
连结OQ
∵OQ=3,四边形OPQR为正方形
∴S1=3×3÷2=![]()
方法二:如图2
过O作OH⊥EF
设FH=a 则OH=3a
在Rt△OHF中 ![]()
∴![]()
![]()
解得:![]()
∴EF=![]()
∴S2=
=![]()
∵S1>S2 ∴方法一的面积更大
-
科目: 来源: 题型:
查看答案和解析>>【题目】从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买A,B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点N.
(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;
(2)如图②,点G是CD上的一点,连接MA、MG,若MC平分∠AMG且∠AMG=36°,∠MGD+∠EAB=180°,求∠ACD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.

求证:(1)AE=DB;
(2)△CMN为等边三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系
中,点
的坐标为(0,4),线段
的位置如图所示,其中点
的坐标为(
,
),点
的坐标为(3,
).
(1)将线段
平移得到线段
,其中点
的对应点为
,点
的对应点为点
.①点
平移到点
的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点
的坐标为 .(2)在(1)的条件下,若点
的坐标为(4,0),连接
,画出图形并求
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为
,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.分数段
频数
百分比

38
0.38

0.32


10
0.1
合计
100
1
书法作品比赛成绩频数直方图

根据上述信息,解答下列问题:
(1)请你把表中空白处的数据填写完整.
(2)请补全书法作品比赛成绩频数直方图.
(3)若80分(含80分)以上的书法作品将被评为等级奖,试估计全市获得等级的幅数.
相关试题