【题目】在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:
(1)运动开始后第几秒时,△PBQ的面积等于8cm2?
(2)当运动开始后
秒时,试判断△DPQ的形状;
(3)在运动过程中,是否存在这样的时刻,使以Q为圆心,PQ为半径的圆正好经过点D?若存在,求出运动时间;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)t=2或4,即经过2秒或4秒,△PBQ的面积等于8cm2;
(2)△DPQ为直角三角形;
(3)运动开始后第6
﹣18秒时,以Q为圆心,PQ为半径的圆正好经过点D.
【解析】试题分析:(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;(2)表示出DP2=
,PQ2=
,DQ2=117,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,整理得到方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.
试题解析:(1)设经过t秒,△PBQ的面积等于8cm2,
则:BP=6﹣t,BQ=2t,
所以
×(6﹣t)×2t=8,即t2﹣6t+8=0,
可得:t=2或4,即经过2秒或4秒,△PBQ的面积等于8cm2.
(2)当t=
秒时,
AP=
,BP=6﹣
=
,BQ=
×2=3,CQ=12﹣3=9,
∴在Rt△DAP中,
,
在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,
在Rt△QBP中,
,
∴
,
∴DQ2+QP2=DP2,
∴△DPQ为直角三角形;
(3)假设运动开始后第x秒时,满足条件,则:QP=QD,
∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,
QD2=QC2+CD2=(12﹣2x)2+62,
∴(12﹣2x)2+62=(6﹣x)2+(2x)2,
整理,得:x2+36x﹣144=0,
解得:x=﹣18±6
,
∵0<6
﹣18<6,
∴运动开始后第6
﹣18秒时,以Q为圆心,PQ为半径的圆正好经过点D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若
,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( )
A.5.6×103
B.5.6×104
C.5.6×105
D.0.56×105 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.
(1)填表(不需化简)
入住的房间数量
房间价格
总维护费用
提价前
60
200
60×20
提价后
(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.

(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】△
中,
.取
边的中点
,作
⊥
于点
,取
的中点
,连接
,
交于点
.(1)如图1,如果
,求证:
⊥
并求
的值; (2)如图2,如果
,求证:
⊥
并用含
的式子表示
.
相关试题