【题目】二次函数y=ax2+bx+4的图像与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0)![]()
(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣
,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.
参考答案:
【答案】
(1)
解:当x=0时,y=4,
∴C(0,4).
设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入得:﹣4a=4,解得a=﹣1,
∴抛物线的解析式为y=﹣x2+3x+4
(2)
解:x=﹣
=
.
∴CD=
,EF=
.
设点N的坐标为(
,a)则ND=4﹣a,NE=a.
当△CDN∽△FEN时,
,即
,解得a=
,
∴点N的坐标为(
,
).
当△CDN∽△NEF时,
,即
=
,解得:a=2.
∴点N的坐标为(
,2).
综上所述,点N的坐标为(
,
)或(
,2)
(3)
解:如图所示:过点A作AD∥y轴,过点M作DM∥x轴,交点为D,过点A作AE⊥AM,取AE=AM,作EF⊥x轴,垂足为F,连结EM交抛物线与点P.
![]()
∵AM=AE,∠MAE=90°,
∴∠AMP=45°.
将x=1代入抛物线的解析式得:y=6,
∴点M的坐标为(1,6).
∴MD=2,AD=6.
∵∠DAM+∠MAF=90°,∠MAF+∠FAE=90°,
∴∠DAM=∠FAE.
在△ADM和△AFE中,
,
∴△ADM≌△AFE.
∴EF=DM=2,AF=AD=6.
∴E(5,﹣2).
设EM的解析式为y=kx+b.
将点M和点E的坐标代入得:
,解得k=﹣2,b=8,
∴直线EM的解析式为y=﹣2x+8.
将y=﹣2x+8与y=﹣x2+3x+4联立,解得:x=1或x=4.
将x=4代入y=﹣2x+8得:y=0.
∴点P的坐标为(4,0)
【解析】(1)先求得点C的坐标,设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入求得a的值,从而得到抛物线的解析式;(2)先求得抛物线的对称轴,然后求得CD,EF的长,设点N的坐标为(0,a)则ND=4﹣a,NE=a,然后依据相似三角形的性质列出关于a的方程,然后可求得a的值;(3)过点A作AD∥y轴,过点M作DM∥x轴,交点为D,过点A作AE⊥AM,取AE=AM,作EF⊥x轴,垂足为F,连结EM交抛物线与点P.则△AME为等腰直角三角形,然后再求得点M的坐标,从而可得到MD=2,AD=6,然后证明∴△ADM≌△AFE,于是可得到点E的坐标,然后求得EM的解析式为y=﹣2x+8,最后求得直线EM与抛物线的交点坐标即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:

由上面表格中的数据,解决下列问题:
(1)甲车开出7小时时的位置为 km,流动加油车出发位置为 km;
(2)当两车同时开出x小时时,甲车位置为 km,流动加油车位置为 km (用x的代数式表示);
(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡行走20m,到达坡顶D处,已知斜坡的坡角为15°.(sin15°=0.259,cos15°=0.966,tan15°=0.268,以下计算结果精确到0.1m)

(1)求小华此时与地面的垂直距离CD的值;
(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米? -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)x2y﹣3xy2+2x2y﹣y2x ;(2)2(2a2﹣9b)﹣3(3a2﹣7b);
(3)2a2﹣[
(ab﹣4a2)+8ab]﹣
ab. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AB=4,tan∠ACB=
,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列几何体的主视图既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
相关试题