【题目】某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3. 4元,超计划部分每吨按4. 6元收费.
(1)用代数式表示(所填结果需化简):
设用水量为
吨,当用水量小于等于300吨,需付款 元;当用水量大于300吨,需付款 元.
(2)若某单位4月份缴纳水费1480元,则该单位用水多少吨?
(3)若某单位5、6月份共用水700吨(6月份用水量超过5月份),共交水费2560元,则该单位5、6月份各用水多少吨?
参考答案:
【答案】(1)3.4x;4.6x-360;(2)400吨;(3)5月份250吨,6月份450吨.
【解析】试题分析:(1)根据每月只给某单位计划内用水300吨,计划内用水每吨收费3. 4元,可得:当用水量x小于等于300吨,需付款3.4x,根据超计划部分每吨按4. 6元收费可得: 当用水量x大于300吨,需付款300×3.4+
,
先假设用水量为300吨,则需付款1020元,因为某单位4月份缴纳水费1480元,所以可列方程4.6x-360=1480,解方程即可.
(3)设5月份用水y吨,则6月份用水(700-y)吨,分当y<300和 当y>300两种情况讨论即可求解.
试题解析:解:(1)设用水量为x吨,当用水量小于等于300吨,需付款3.4x元,
当用水量大于300吨,需付款300×3.4+
,
(2)假设用水量为300吨,则需付款1020元,
因为某单位4月份缴纳水费1480元,所以可列方程4.6x-360=1480,解得x=400,
(3)设5月份用水y吨,则6月份用水(700-y)吨,
当y<300,则3.4y+4.6(700-y)-360=2560,
解得y=250,则700-y=450,
当y>300,因为6月份用水量超过5月份,所以700-y>300,共交水费600×3.4+10×4.6=2500≠2560,所以此种情况不成立,
答:该单位5月份用水250吨,6月份用水450吨.
-
科目: 来源: 题型:
查看答案和解析>>【题目】角平分线上的点到角两边的距离相等.这一性质在解决图形面积问题时有何妙用呢?阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,三条角平分线的交点O到三边的距离为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
∵S=S△OBC+S△OAC+S△OAB=
BCr+
ACr+
ABr=
(a+b+c)r,∴r=

(1)类比推理:若面积为S的四边形ABCD的四条角平分线交于O点,如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求点O到四边的距离r;
(2)理解应用:如图(3),在四边形ABCD中,AB∥DC,AB=21,CD=11,AD=BC=13,对角线BD=20,点O1与O2分别为△ABD与△BCD的三条角平分线的交点,设它们到各自三角形三边的距离为r1和r2 , 求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】若x=2是方程ax﹣1=3的解,求a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C运动,设点P运动的时间为t秒.

(1)当t为何值时,点P与点A的距离为5cm?
(2)当t为何值时,△APD是等腰三角形?
(3)当t为何值时,(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边? -
科目: 来源: 题型:
查看答案和解析>>【题目】定义一种运算“*”,其规则为a※b=a2﹣b2,则方程(x+2)*5=0的解为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若2x=5,2y=3,则22x+y=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若第四象限内的点P(x,y)满足|x|=3,y2=4,则点P的坐标是________.
相关试题