【题目】如图是按规律摆放在墙角的一些小正方体,从上往下分别记为第一层,第二层,第三层,…,第n层.
![]()
(1)第三层有________个小正方体;
(2)从第四层至第六层(含第四层和第六层)共有________个小正方体;
(3)第n层有________个小正方体;
(4)若每个小正方体边长为a分米,共摆放了n层,则要将摆放的小正方体能看到的表面部分涂上防锈漆,则防锈漆的总面积为________平方分米.
参考答案:
【答案】(1)6(2)46(3)
(4)
a2n(n+1)
【解析】
(1)第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,以此类推第三层即可;
(2)第4至6层求出每层个数相加即可;
(3)根据相应规律可得第n层正方体的个数为1+2+3+…+n=
;
(4)共摆放n层,根据正面、右面、上面小正方形的面的个数,求出总面数再乘每一个小正方形的面积即可.
解:(1)第1层,共1个小正方体,
第2层正方体的个数为1+2=3,
第3层正方体的个数为:1+2+3=6.
故答案为:6.
(2)第4层正方体的个数为:10,
第5层正方体的个数为:15,
第6层正方体的个数为:21,
所以从第四层至第六层(含第四层和第六层)共有:10+15+21=46.
故答案为:46.
(3)根据(1)相应规律,可得第n层正方体的个数为1+2+3+…+n=
;
(4)共摆放n层,则正面小正方形的面的个数:2×(1+2+3+…+n)=n(n+1),
右面小正方形的面的个数:1+2+3+…+n=
,
所以涂上防锈漆的面积为:[n(n+1)+
]×a2=
a2n(n+1)分米2.
故答案为:(1)6;(2)41;(3)
;(4)
a2n(n+1).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.

(1)求证:OE=OF;
(2)如图(2),若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其他条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.
小明做了如下操作:
将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:
(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;
(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0)。已知点P从点A出发沿AB路线向点B运动,点Q从点C出发沿CO路线向点O运动,运动速度都是每秒一个单位长度,运动时间为t秒.
(1)当四边形AQCB是平行四边形时,求t值;
(2)连接PQ,当四边形APQO是矩形时,求t值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.

(1)求抛物线的解析式;
(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,B是线段AD上一动点,沿A→D→A以 2 cm/s的速度往返运动1次,C是线段BD的中点,AD=10 cm,设点B的运动时间为t秒(0≤t≤10).
(1)当t=2时,
①AB=____cm;
②求线段CD的长度;
(2)用含t的代数式表示运动过程中AB的长;
(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题:
(1)一本数学课本的高度是多少厘米?
(2)讲台的高度是多少厘米?
(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x的代数式表示);
(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.

相关试题