【题目】计算下列各题
(1)计算:
+
+(﹣1)0﹣2sin45°
(2)求满足
的x、y的正整数解.
参考答案:
【答案】
(1)解:原式=
+4+1﹣2×
=5
(2)解:由2x+y=15可知y=15﹣2x,
代入y+7x≤22得,15﹣2x+7x≤22,
解得x≤
,
当x=1时,代入2x+y=15,解得y=13,
所以满足
的x、y的正整数解是 ![]()
【解析】(1)涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先给出x的正整数值,进而求得对应的y的值,进行判断即可.
【考点精析】解答此题的关键在于理解零指数幂法则的相关知识,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数),以及对整数指数幂的运算性质的理解,了解aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明用下面的方法求出方程2
﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.方程
换元法得新方程
解新方程
检验
求原方程的解
2
﹣3=0令
=t,则2t﹣3=0t=

t=
>0
=
,所以x= 
x﹣2
+1=0x+2+
=0 -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料,并解决后面的问题. 材料:我们知道,n个相同的因数a相乘
可记为an , 如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3),一般地,若an=b (a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4)
(1)计算以下各对数的值:log24= , log216= , log264= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
(3)根据(2)的结果,我们可以归纳出:logaM+logaN=logaM N(a>0且a≠1,M>0,N>0) 请你根据幂的运算法则:am=am+n以及对数的定义证明该结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以AB为直径的⊙O交△ABC的BC、AC边与D、E两点,在图中仅以没有刻度的直尺画出三角形的三条高(简单叙述你的画法).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( )

A.
B.

C.

D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O

(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.
相关试题