【题目】根据下列证明过程填空:
已知:如 图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.
求证:AD平分∠BAC,填写证明中的空白.
证明:
∵AD⊥BC,EF⊥BC (已知),
∴EF∥AD ( ),
∴ = ( 两直线平行,内错角相等 ),
=∠CAD ( ).
∵ (已知),
∴ ,即AD平分∠BAC ( ).
![]()
参考答案:
【答案】平面内,垂直于同一条直线的两直线平行,∠1,∠BAD,∠2,两直线平行,同位角相等,∠1=∠2,∠BAD=∠CAD,角平分线定义.
【解析】试题分析:由AD⊥BC,EF⊥BC,可得AD∥EF,由两直线平行,内错角相等可得∠1=∠BAD,由两直线平行,同位角相等可得∠2=∠CAD,又因为∠1=∠2,所以∠BAD=∠CAD,即AD平分∠BAC.
试题解析:
证明:∵AD⊥BC,EF⊥BC,
∴∠ADC=∠EFC=90°,
∴AD∥EF(平面内,垂直于同一条直线的两直线平行),
∴∠1=∠BAD(两直线平行,内错角相等),
∠2=∠CAD(两直线平行,同位角相等),
∵∠1=∠2(已知),
∴∠BAD=∠CAD,即AD平分∠BAC(角平分线定义).
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明、小华用方块2、黑桃4、黑桃5、梅花5四张扑克牌玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.
(1)若小明恰好抽到了黑桃4;
①请在方框中绘制这种情况的树状图;

②求小华抽出的牌的牌面数字比4大的概率;
(2)小明、小华约定:只抽一次,若小明抽到牌的牌面数字比小华的大,则小明胜;反之,则小明负。你认为这个游戏是否公平?说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是
.(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读材料,再尝试解决问题:
完全平方式
以及
的值为非负数的特点在数学学习中有广泛的应用,比如探求
的最大(小)值时,我们可以这样处理:解:原式 =
.因为无论
取什么数,都有
的值为非负数,所以
的最小值为0;此时
时,进而
的最小值是
;所以当
时,原多项式的最小值是
.请根据上面的解题思路,探求:
⑴.多项式
的最小值是多少,并写出对应的
的取值;⑵.多项式
的最大值是多少,并写出对应的
的取值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1)请你判断DA与CE的位置关系,并说明理由;
(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.
(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;
(2)若EF=4,BF:FD=5:3,S△BCF=10,求点D到AB的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在四边形ABCD中,
,延长BC至点E,连接AE交CD于点F,使
求证:
;
求证:
;
若BF平分
,请写出
与
的数量关系______
不需证明

相关试题