【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,直线
经过点A,且BD⊥l于的D,CE⊥l于的E.
(1)求证:BD+CE=DE;
(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)BD-CE=DE.
【解析】
⑴证明△ABD ≌△CAE,从而得到BD=AE,AD=CE,
所以BD+CE=AE+AD=DE.
⑵证明△ABD ≌△CAE,从而得到BD=AE,AD=CE,
所以DE=AE-AD=BD-CE.
⑴∵∠DBA+∠DAB=90°,∠ DAB+∠ EAC=90°,
∴∠ DBA=∠ EAC.
在△ABD 和△CAE中,
,
∴ △ABD ≌△CAE(AAS),
∴BD=AE,AD=CE,故BD+CE=AE+AD=DE.
⑵由⑴易得,△ABD ≌△CAE,
∴BD=AE,AD=CE,故DE=AE-AD=BD-CE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.
(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;
(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.
①求证:△ABE∽△ACD;
②计算:BD2+CE2的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度数.
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个质点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,若经过23秒质点到达点A,经过33秒质点到达点B,则直线AB的解析式为( )

A.y=
x+
B.y=﹣
x+
C.y=2x+9D.y=﹣2x+9 -
科目: 来源: 题型:
查看答案和解析>>【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣
,y=
的图象交于B、A两点,则tan∠OAB的值的变化趋势为( )
A. 逐渐变小 B. 逐渐变大 C. 时大时小 D. 保持不变
相关试题