【题目】如图,在图①中的正方形中剪去一个边长为2a+b的正方形,将剩余的部分按图②的方式拼成一个长方形.
(1)求剪去正方形的面积;
(2)求拼成的长方形的长、宽以及它的面积.
![]()
参考答案:
【答案】(1) 4a2+4ab+b2.(2) 5a2+8ab+3b2.
【解析】
(1)运用正方形面积公式,即可得到剪去正方形的面积;
(2)依据拼成的长方形的长为3a+2b+(2a+b)=5a+3b,宽为3a+2b-(2a+b)=a+b,即可得到其面积.
(1)剪去正方形的面积为(2a+b)2=4a2+4ab+b2;
(2)∵拼成的长方形的长为3a+2b+(2a+b)=5a+3b,
宽为3a+2b-(2a+b)=a+b,
∴拼成的长方形的面积为(5a+3b)(a+b)=5a2+8ab+3b2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=
x2﹣2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:
①PO2=PAPB;
②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;
③当k=-
时,BP2=BOBA;
④△PAB面积的最小值为
.
其中正确的是 . (写出所有正确说法的序号) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B,C为⊙O上相邻的三个n等分点,
,点E在
上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=;当n=12时,p= . (参考数据:sin15°=cos75°=
,cos15°=sin75°=
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
造型花卉
甲
乙
A
80
40
B
50
70
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC和△ECD都是等边三角形, B、C、D在一条直线上。
求证:(1)BE=AD;
(2)CF=CH;
(3)△FCH是等边三角形;
(4)FH∥BD;
(5)求∠EMD的度数。;

-
科目: 来源: 题型:
查看答案和解析>>【题目】某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和. 根据以上信息,完成下列问题:

(1)当3<t≤7时,用含t的式子表示v;
(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的
时所用的时间. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.

(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若tan∠ADB=
,PA=
AH,求BD的长;
(3)在(2)的条件下,求四边形ABCD的面积.
相关试题