【题目】如图,在菱形ABCD中,AB=BD,点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G,若BG=2,DG=4,则CD长为__.
![]()
参考答案:
【答案】2
【解析】延长DE至H,使GH=BG,连接BH、CH,∵四边形ABCD为菱形,∴BC=DC=AB=BD,∴△BDC是等边三角形,∴∠DBC=∠BCF=60°,∵CE=DF,∴BC﹣CE=CD﹣DF,即BE=CF,在△DBE和△BCF中,∵DB=BC,∠DBC=∠BCF,BE=CF,∴△DBE≌△BCF(SAS),∴∠BDG=∠FBC,∴∠BDG+∠DBF=∠FBC+∠DBF=60°,∴∠BGE=∠BDG+∠DBF=60°,∴△BGH为等边三角形,∴BG=BH=2,∠GBH=60°,∴∠DBF+∠FBC=∠HBC+∠FBC,∴∠DBF=∠HBC,在△BGD和△BHC中,∵BD=BC,∠DBF=∠HBC,BG=BH,∴△BGD≌△BHC(SAS),∴DG=CH=4,∵∠FBC=∠BDG=∠BCH,∴BF∥CH,∴△BGE∽△CEH,∴
,∵EG+EH=2,∴EG=
,∴BF=DE=4+
=
,∵∠FBC=∠FBC,∠BGE=∠BCD=60°,∴△BGE∽△BCF,∴
,∴
,∴CF2=
,CF=
,∴BE=CF=
,∴BC=3BE=3×
=
,∴CD=BC=
.
故答案为:
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】2台大收割机和5台小收割机同时工作2 h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线l1:y=
x-3与x轴,y轴分别交于点A和点B.(1)求点A和点B的坐标;
(2)将直线l1向上平移6个单位后得到直线l2,求直线l2的函数解析式;
(3)设直线l2与x轴的交点为M,则△MAB的面积是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是( )

A.300B.320C.340D.360
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=
BD其中正确结论的为______(请将所有正确的序号都填上).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,∠BAD=60°.
(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;
(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.

相关试题