【题目】如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是 . ![]()
参考答案:
【答案】x1=1,x2=﹣3
【解析】解:∵抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,
∴抛物线y=ax2+bx+c与x轴的另一个交点是(﹣3,0),
∴一元二次方程ax2+bx+c=0的解是:x1=1,x2=﹣3.
所以答案是:x1=1,x2=﹣3.
【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置
记作(m,n),如正整数8的位置是(2,3),则正整数139的位置记作_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】探索规律:观察下面由“※”组成的图案和算式,解答问题:

(1)请猜想1+3+5+7+9+…+19=_______________________;
(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;
(3)请用上述规律计算:51+53+55+…+2011+2013.
-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B两地果园分别有橘子40吨和60吨,C、D两地分别需要橘子30吨和70吨;已知从A、B到C、D的运价如表:
到C地
到D地
A果园
每吨15元
每吨12元
B果园
每吨10元
每吨9元
(1)若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为 ____吨,
从A果园将橘子运往D地的运输费用为 ____ 元.
(2)用含x的式子表示出总运输费(要求:列式、化简).
(3)求总运输费用的最大值和最小值.
(4)若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=-(x-25)2+4360.则当x= ___ 时,w有最 __ 值(填“大”或“小”).这个值是 __ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,点A表示数a,点B表示数b,已知a、b满足
.(1)求a、b的值;
(2)若在数轴上存在一点C,使得C到A的距离是C到B的距离的2倍,求点C表示的数;
(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.

相关试题